
of Visual Communication and Image Representation,
90:103712.
Hor
´
e, A. and Ziou, D. (2010). Image quality metrics: Psnr
vs. ssim. In 2010 20th International Conference on
Pattern Recognition, pages 2366–2369.
Huang, J., Liu, Y., Zhao, F., Yan, K., Zhang, J., Huang, Y.,
Zhou, M., and Xiong, Z. (2022). Deep fourier-based
exposure correction network with spatial-frequency
interaction. In Avidan, S., Brostow, G., Ciss
´
e, M.,
Farinella, G. M., and Hassner, T., editors, Computer
Vision – ECCV 2022, pages 163–180, Cham. Springer
Nature Switzerland.
Huang, S.-C., Cheng, F.-C., and Chiu, Y.-S. (2013). Ef-
ficient contrast enhancement using adaptive gamma
correction with weighting distribution. IEEE Trans-
actions on Image Processing, 22(3):1032–1041.
Hussain, S. A., Chalicham, N., Garine, L., Chunduru, S.,
Nikitha, V., Prasad V, P., and Sanki, P. K. (2024). Low-
light image restoration using a convolutional neural
network. Journal of Electronic Materials, pages 1–
12.
Janocha, K. and Czarnecki, W. M. (2017). On loss func-
tions for deep neural networks in classification. arXiv
preprint arXiv:1702.05659.
Ji, Z. and Jung, C. (2021). Subband adaptive enhancement
of low light images using wavelet-based convolutional
neural networks. In 2021 IEEE International Confer-
ence on Image Processing (ICIP), pages 1669–1673.
Jiang, H., Luo, A., Fan, H., Han, S., and Liu, S. (2023).
Low-light image enhancement with wavelet-based
diffusion models. ACM Transactions on Graphics
(TOG), 42(6):1–14.
Kim, M. W. and Cho, N. I. (2023). Whfl: Wavelet-domain
high frequency loss for sketch-to-image translation. In
Proceedings of the IEEE/CVF Winter Conference on
applications of computer vision, pages 744–754.
Mallat, S. (1999). A Wavelet Tour of Signal Processing.
Electronics & Electrical. Elsevier Science.
Mertens, K. C., Verbeke, L. P., Westra, T., and De Wulf,
R. R. (2004). Sub-pixel mapping and sub-pixel sharp-
ening using neural network predicted wavelet coeffi-
cients. Remote Sensing of Environment, 91(2):225–
236.
Nilsson, J. and Akenine-M
¨
oller, T. (2020). Understanding
ssim. arXiv preprint arXiv:2006.13846.
Othman, G. and Zeebaree, D. Q. (2020). The applications
of discrete wavelet transform in image processing: A
review. Journal of Soft Computing and Data Mining,
1(2):31–43.
Rahman, S., Rahman, M. M., Abdullah-Al-Wadud, M., Al-
Quaderi, G. D., and Shoyaib, M. (2016). An adaptive
gamma correction for image enhancement. EURASIP
Journal on Image and Video Processing, 2016(1):35.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pages 234–241.
Springer.
Sakib, S., Ahmed, N., Kabir, A. J., and Ahmed, H. (2019).
An overview of convolutional neural network: Its ar-
chitecture and applications.
Senthilkumar, C. and Kamarasan, M. (2020). An effective
classification of citrus fruits diseases using adaptive
gamma correction with deep learning model. Int. J.
Eng. Adv. Technol, 9(2):2249–8958.
Shakibania, H., Raoufi, S., and Khotanlou, H. (2023).
Cdan: Convolutional dense attention-guided network
for low-light image enhancement.
Ullah, Z., Farooq, M. U., Lee, S.-H., and An, D. (2020).
A hybrid image enhancement based brain mri im-
ages classification technique. Medical Hypotheses,
143:109922.
Wang, C., Wu, H., and Jin, Z. (2023a). Fourllie: Boosting
low-light image enhancement by fourier frequency in-
formation. In Proceedings of the 31st ACM Interna-
tional Conference on Multimedia, pages 7459–7469.
Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q.
(2020a). Eca-net: Efficient channel attention for deep
convolutional neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 11534–11542.
Wang, W., Wu, X., Yuan, X., and Gao, Z. (2020b). An
experiment-based review of low-light image enhance-
ment methods. IEEE Access, 8:87884–87917.
Wang, Y., Liu, Z., Liu, J., Xu, S., and Liu, S. (2023b). Low-
light image enhancement with illumination-aware
gamma correction and complete image modelling net-
work. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
13128–13137.
Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004).
Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612.
Wang, Z. and Zhang, X. (2024). Contextual recovery net-
work for low-light image enhancement with texture
recovery. Journal of Visual Communication and Im-
age Representation, 99:104050.
Weeks, M. and Bayoumi, M. (2003). Discrete wavelet trans-
form: architectures, design and performance issues.
Journal of VLSI signal processing systems for signal,
image and video technology, 35:155–178.
Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). Cbam:
Convolutional block attention module. In Proceed-
ings of the European conference on computer vision
(ECCV), pages 3–19.
Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empiri-
cal evaluation of rectified activations in convolutional
network. arXiv preprint arXiv:1505.00853.
Xu, J., Yuan, M., Yan, D.-M., and Wu, T. (2022). Illumi-
nation guided attentive wavelet network for low-light
image enhancement. IEEE Transactions on Multime-
dia.
Xu, Q., Zhang, R., Zhang, Y., Wang, Y., and Tian, Q.
(2021). A fourier-based framework for domain gen-
eralization. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 14383–14392.
GWNet: A Lightweight Model for Low-Light Image Enhancement Using Gamma Correction and Wavelet Transform
273