
REFERENCES
Agustsson, E. and Timofte, R. (2017). Ntire 2017 challenge
on single image super-resolution: Dataset and study.
In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pages 126–
135.
Allen, M. (2007). Reading’CSI’: Crime TV Under the Mi-
croscope. Bloomsbury Publishing.
Bevilacqua, M., Roumy, A., Guillemot, C., and Alberi-
Morel, M. L. (2012). Low-complexity single-image
super-resolution based on nonnegative neighbor em-
bedding.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee.
Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian
approximation: Representing model uncertainty in
deep learning. In international conference on machine
learning, pages 1050–1059. PMLR.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. Advances
in neural information processing systems, 27.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delv-
ing deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In Proceedings
of the IEEE international conference on computer vi-
sion, pages 1026–1034.
Huang, J.-B., Singh, A., and Ahuja, N. (2015). Single image
super-resolution from transformed self-exemplars. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 5197–5206.
Jolicoeur-Martineau, A. (2018). The relativistic discrimina-
tor: a key element missing from standard gan. arXiv
preprint arXiv:1807.00734.
Kar, A. and Biswas, P. K. (2021). Fast bayesian uncertainty
estimation and reduction of batch normalized single
image super-resolution network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4957–4966.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017).
Simple and scalable predictive uncertainty estimation
using deep ensembles. Advances in neural informa-
tion processing systems, 30.
Ledig, C., Theis, L., Husz
´
ar, F., Caballero, J., Cunningham,
A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,
Z., et al. (2017). Photo-realistic single image super-
resolution using a generative adversarial network. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 4681–4690.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Com-
puter Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part V 13, pages 740–755. Springer.
Liu, T., Cheng, J., and Tan, S. (2023). Spectral bayesian un-
certainty for image super-resolution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18166–18175.
Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A
database of human segmented natural images and its
application to evaluating segmentation algorithms and
measuring ecological statistics. In Proceedings Eighth
IEEE International Conference on Computer Vision.
ICCV 2001, volume 2, pages 416–423. IEEE.
Shi, W., Caballero, J., Husz
´
ar, F., Totz, J., Aitken, A. P.,
Bishop, R., Rueckert, D., and Wang, Z. (2016). Real-
time single image and video super-resolution using an
efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 1874–
1883.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Song, H. and Yang, Y. (2023). Uncertainty quantification
in super-resolution guided wave array imaging using
a variational bayesian deep learning approach. NDT
& E International, 133:102753.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: a simple way
to prevent neural networks from overfitting. The jour-
nal of machine learning research, 15(1):1929–1958.
Tanno, R., Worrall, D. E., Ghosh, A., Kaden, E., Sotiropou-
los, S. N., Criminisi, A., and Alexander, D. C. (2017).
Bayesian image quality transfer with cnns: exploring
uncertainty in dmri super-resolution. In Medical Im-
age Computing and Computer Assisted Intervention-
MICCAI 2017: 20th International Conference, Que-
bec City, QC, Canada, September 11-13, 2017, Pro-
ceedings, Part I 20, pages 611–619. Springer.
Timofte, R., Agustsson, E., Van Gool, L., Yang, M.-H., and
Zhang, L. (2017). Ntire 2017 challenge on single im-
age super-resolution: Methods and results. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition workshops, pages 114–125.
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao,
Y., and Change Loy, C. (2018). Esrgan: Enhanced
super-resolution generative adversarial networks. In
Proceedings of the European conference on computer
vision (ECCV) workshops, pages 0–0.
Zeyde, R., Elad, M., and Protter, M. (2012). On single im-
age scale-up using sparse-representations. In Curves
and Surfaces: 7th International Conference, Avignon,
France, June 24-30, 2010, Revised Selected Papers 7,
pages 711–730. Springer.
Zhang, K., Li, D., Luo, W., Ren, W., Stenger, B., Liu,
W., Li, H., and Yang, M.-H. (2021). Benchmarking
ultra-high-definition image super-resolution. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 14769–14778.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
374