
REFERENCES
Abend, K., Harley, T., and Kanal, L. (1965). Classifica-
tion of binary random patterns. IEEE Transactions on
Information Theory, 11(4):538–544.
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
S
¨
usstrunk, S. (2012). Slic superpixels compared to
state-of-the-art superpixel methods. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
34(11):2274–2282.
Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011).
Contour detection and hierarchical image segmen-
tation. IEEE Trans. Pattern Anal. Mach. Intell.,
33(5):898–916.
Ayed, I. B., Chen, H.-m., Punithakumar, K., Ross, I., and Li,
S. (2010). Graph cut segmentation with a global con-
straint: Recovering region distribution via a bound of
the bhattacharyya measure. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, pages 3288–3295. IEEE.
Besag, J. (1986). On the statistical analysis of dirty pic-
tures. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 48(3):259–279.
Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast ap-
proximate energy minimization via graph cuts. IEEE
Transactions on pattern analysis and machine intelli-
gence, 23(11):1222–1239.
Boykov, Y. Y. and Jolly, M.-P. (2001). Interactive graph cuts
for optimal boundary & region segmentation of ob-
jects in nd images. In Proceedings eighth IEEE inter-
national conference on computer vision. ICCV 2001,
volume 1, pages 105–112. IEEE.
Caesar, H., Uijlings, J., and Ferrari, V. (2018). Coco-stuff:
Thing and stuff classes in context. In Computer vision
and pattern recognition (CVPR), 2018 IEEE confer-
ence on. IEEE.
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. (2020). End-to-end object de-
tection with transformers. In European conference on
computer vision, pages 213–229. Springer.
Caron, M., Bojanowski, P., Joulin, A., and Douze, M.
(2018). Deep clustering for unsupervised learning of
visual features. In Proceedings of the European con-
ference on computer vision (ECCV), pages 132–149.
Caron, M., Touvron, H., Misra, I., J
´
egou, H., Mairal, J., Bo-
janowski, P., and Joulin, A. (2021). Emerging prop-
erties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 9650–9660.
Chan, T. F. and Vese, L. A. (2001). Active contours with-
out edges. IEEE Transactions on image processing,
10(2):266–277.
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. (2017a). Deeplab: Semantic image seg-
mentation with deep convolutional nets, atrous convo-
lution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence, 40(4):834–
848.
Chen, L.-C., Papandreou, G., Schroff, F., and Adam,
H. (2017b). Rethinking atrous convolution for
semantic image segmentation. arXiv preprint
arXiv:1706.05587.
Cho, J. H., Mall, U., Bala, K., and Hariharan, B. (2021).
Picie: Unsupervised semantic segmentation using in-
variance and equivariance in clustering. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16794–16804.
El-Zehiry, N. Y. and Grady, L. (2010). Fast global optimiza-
tion of curvature. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion, pages 3257–3264. IEEE.
Gandelsman, Y., Shocher, A., and Irani, M. (2019). ”
double-dip”: unsupervised image decomposition via
coupled deep-image-priors. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11026–11035.
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-
Martinez, V., and Garcia-Rodriguez, J. (2017). A re-
view on deep learning techniques applied to semantic
segmentation.
Hamilton, M., Zhang, Z., Hariharan, B., Snavely, N., and
Freeman, W. T. (2021). Unsupervised semantic seg-
mentation by distilling feature correspondences. In In-
ternational Conference on Learning Representations.
Hamilton, M., Zhang, Z., Hariharan, B., Snavely, N., and
Freeman, W. T. (2022). Unsupervised semantic seg-
mentation by distilling feature correspondences. arXiv
preprint arXiv:2203.08414.
Han, K., Wang, Y., Guo, J., Tang, Y., and Wu, E. (2022). Vi-
sion gnn: An image is worth graph of nodes. Advances
in Neural Information Processing Systems, 35:8291–
8303.
Huang, H., Chen, Z., and Rudin, C. (2022). Segdiscover:
Visual concept discovery via unsupervised semantic
segmentation.
Hwang, J.-J., Yu, S. X., Shi, J., Collins, M. D., Yang, T.-J.,
Zhang, X., and Chen, L.-C. (2019). Segsort: Segmen-
tation by discriminative sorting of segments. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 7334–7344.
Ji, X., Henriques, J. F., and Vedaldi, A. (2019). Invariant
information clustering for unsupervised image clas-
sification and segmentation. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 9865–9874.
Kim, W., Kanezaki, A., and Tanaka, M. (2020). Unsuper-
vised learning of image segmentation based on dif-
ferentiable feature clustering. IEEE Transactions on
Image Processing, 29:8055–8068.
Kolmogorov, V. and Boykov, Y. (2005). What metrics can
be approximated by geo-cuts, or global optimization
of length/area and flux. In Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1,
volume 1, pages 564–571. IEEE.
Kr
¨
ahenb
¨
uhl, P. and Koltun, V. (2011). Efficient inference
in fully connected crfs with gaussian edge potentials.
Advances in neural information processing systems,
24.
Li, K., Wang, Z., Cheng, Z., Yu, R., Zhao, Y., Song, G., Liu,
C., Yuan, L., and Chen, J. (2023). Acseg: Adaptive
Patch-Based Deep Unsupervised Image Segmentation Using Graph Cuts
111