
more complex problems like ATSP, VRP, and real-
world problems.
REFERENCES
Bossek, J. (2017). Salesperson: computation of instance
features and r interface to the state-of-the-art exact and
inexact solvers for the traveling salesperson problem.
Cris¸an, G. C., Nechita, E., and Simian, D. (2021). On ran-
domness and structure in euclidean tsp instances: A
study with heuristic methods. IEEE Access, 9:5312–
5331.
Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio,
Y., and Bresson, X. (2023). Benchmarking graph neu-
ral networks. Journal of Machine Learning Research,
24(43):1–48.
He, Y. and Yuen, S. Y. (2020). Black box algorithm se-
lection by convolutional neural network. In Machine
Learning, Optimization, and Data Science: 6th Inter-
national Conference, LOD 2020, Siena, Italy, July 19–
23, 2020, Revised Selected Papers, Part II 6, pages
264–280. Springer.
Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P.,
Pande, V., and Leskovec, J. (2019). Strategies for
pre-training graph neural networks. arXiv preprint
arXiv:1905.12265.
Hudson, B., Li, Q., Malencia, M., and Prorok, A.
(2021). Graph neural network guided local search
for the traveling salesperson problem. arXiv preprint
arXiv:2110.05291.
Huerta, I. I., Neira, D. A., Ortega, D. A., Varas, V., Godoy,
J., and As
´
ın-Ach
´
a, R. (2022). Improving the state-of-
the-art in the traveling salesman problem: an anytime
automatic algorithm selection. Expert Systems with
Applications, 187:115948.
Jiang, Y., Wu, Y., Cao, Z., and Zhang, J. (2022). Learning to
solve routing problems via distributionally robust op-
timization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 9786–9794.
Jooken, J., Leyman, P., and De Causmaecker, P. (2022). A
new class of hard problem instances for the 0–1 knap-
sack problem. European Journal of Operational Re-
search, 301(3):841–854.
Joshi, C. K., Laurent, T., and Bresson, X. (2019). An
efficient graph convolutional network technique for
the travelling salesman problem. arXiv preprint
arXiv:1906.01227.
Kerschke, P., Kotthoff, L., Bossek, J., Hoos, H. H., and
Trautmann, H. (2018). Leveraging tsp solver com-
plementarity through machine learning. Evolutionary
computation, 26(4):597–620.
Luo, F., Lin, X., Liu, F., Zhang, Q., and Wang, Z. (2023).
Neural combinatorial optimization with heavy de-
coder: Toward large scale generalization. Advances
in Neural Information Processing Systems, 36:8845–
8864.
Ma, Q., Ge, S., He, D., Thaker, D., and Drori, I. (2019).
Combinatorial optimization by graph pointer net-
works and hierarchical reinforcement learning. arXiv
preprint arXiv:1911.04936.
Mersmann, O., Bischl, B., Bossek, J., Trautmann, H., Wag-
ner, M., and Neumann, F. (2012). Local search and the
traveling salesman problem: A feature-based charac-
terization of problem hardness. In Learning and In-
telligent Optimization: 6th International Conference,
LION 6, Paris, France, January 16-20, 2012, Revised
Selected Papers, pages 115–129. Springer.
Pereira, J. L. J., Smith-Miles, K., Mu
˜
noz, M. A., and
Lorena, A. C. (2024). Optimal selection of bench-
marking datasets for unbiased machine learning algo-
rithm evaluation. Data Mining and Knowledge Dis-
covery, 38(2):461–500.
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space. Advances in neural information pro-
cessing systems, 30.
Seiler, M., Pohl, J., Bossek, J., Kerschke, P., and Traut-
mann, H. (2020). Deep learning as a competitive
feature-free approach for automated algorithm selec-
tion on the traveling salesperson problem. In Par-
allel Problem Solving from Nature–PPSN XVI: 16th
International Conference, PPSN 2020, Leiden, The
Netherlands, September 5-9, 2020, Proceedings, Part
I, pages 48–64. Springer.
Smith-Miles, K. and van Hemert, J. (2011). Discovering
the suitability of optimisation algorithms by learning
from evolved instances. Annals of Mathematics and
Artificial Intelligence, 61:87–104.
Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer
networks. Advances in neural information processing
systems, 28.
Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.
Zhang, H., Xu, M., Zhang, G., and Niwa, K. (2022). Ssfg:
Stochastically scaling features and gradients for reg-
ularizing graph convolutional networks. IEEE Trans-
actions on Neural Networks and Learning Systems.
Zhao, H., Jiang, L., Jia, J., Torr, P. H., and Koltun, V.
(2021a). Point transformer. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 16259–16268.
Zhao, K., Liu, S., Yu, J. X., and Rong, Y. (2021b). To-
wards feature-free tsp solver selection: A deep learn-
ing approach. In 2021 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE.
Revisit the Algorithm Selection Problem for TSP with Spatial Information Enhanced Graph Neural Networks
479