das Chagas, A., O., S., Lovisolo, L., Tcheou, M., P., de
Oliveira, J., B., and Souza F. (2024). A proposal for
fall-risk detection of hospitalized patients from wireless
channel state information using Internet of Things
devices. Engineering Applications of Artificial
Intelligence. Volume 133, Part F, 108628.
Dubois, A., Charpillet. F. (2014). A gait analysis method
based on a depth camera for fall prevention. 36th
Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. 26-30
August 2014. Chicago, IL, USA.
Duong, H-T., Le, V-T., Hoang, V-T. (2023). Deep
Learning-Based Anomaly Detection in Video
Surveillance: A Survey. Sensors (Basel). 23(11):5024.
Ebrahimi, F., Rousseau J., Meunier J. (2024), Mobility
Anomaly Detection with Video Surveillance, in Proc.
of the Intl. Conf. on Image Processing, Computer
Vision, & Pattern Recognition, part of the 2024 CSCE
congress, Las Vegas, NV, USA, July 2024.
Gao, M., Li, J., Zhou, D., Zhi, Y., Zhang, M., and Li, B.
(2023). Fall detection based on OpenPose and
MobileNetV2 network. IET Image Processing: Volume
17, Issue 3. Pages: 637-968. 12667.
Gharghan, S., K., Huda Ali Hashim, H., A. (2024). A
comprehensive review of elderly fall detection using
wireless communication and artificial intelligence
techniques. Measurement. Volume 226. 114186.
He, K., Gkioxari,G., Dollár, P., Girshick, R. (2017). Mask
R-CNN. IEEE Intl. Conf. on Computer Vision (ICCV).
22-29 October 2017. Venice, Italy.
Kopčan, J., Škvarek, O., Klimo, M. (2021), Anomaly
detection using Autoencoders and Deep Convolution
Generative Adversarial Networks. Transportation
Research Procedia, Volume 55, Pages 1296-1303.
Kwolek, B., Kepski, M. (2014). Human fall detection on
embedded platform using depth maps and wireless
accelerometer. Computer Methods and Programs in
Biomedicine. Volume 117, Issue 3, Pages 489-501.
Mobsite, S., Alaoui, N., Boulmalf, M., Ghogho, M. (2023).
Semantic segmentation-based system for fall detection
and post-fall posture classification. Engineering
Applications of Artificial Intelligence. V. 117, Part B,
105616.
Neloy, A-A., Turgeon, M. (2024), A comprehensive study
of auto-encoders for anomaly detection: Efficiency and
trade-offs. Machine Learning with Applications,
Volume 17, 100572.
Nizam, Y., Haji Mohd, M., N., Abdul Jamil, M.M. (2017).
Human Fall Detection from Depth Images using
Position and Velocity of Subject. Procedia Computer
Science. Volume 105, Pages 131-137.
Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.
(2007). Fall Detection from Human Shape and
Movement History using Video Surveillance. 21st Intl
Conf. on Advanced Information Networking and
Applications Workshops (AINAW'07), 21-23 May
2007. Niagara Falls, ON, Canada, pp. 875-880.
Sarang, P. (2023). Support Vector Machines. In: Thinking
Data Science. the Springer Series in Applied Machine
Learning. Springer, Cham. https://doi.org/10.1007/978-
3-031-02363-7_8
Silva, C., A., Casilari, E., García-Bermúdez, R. (2024).
Cross-dataset evaluation of wearable fall detection
systems using data from real falls and long-term
monitoring of daily life. Measurement. Volume 235.
114992.
Sobral, A., Vacavant, A. (2014). A comprehensive review
of background subtraction algorithms evaluated with
synthetic and real videos. Computer Vision and Image
Understanding, Volume 122, Pages 4-21.
Tran, K., C., Gassi, M., Nehme, P., Rousseau, J., Meunier,
J. (2022). Video surveillance for near-fall detection at
home. In proc. of the 22
nd
IEEE Intl Conf. on
Bioinformatics and Bioengineering. 07-09 November
2022. Taichung, Taiwan.
Tripathy, S., R., Kingshuk Chakravarty, K., Sinha, A.
(2018). Eigen Posture Based Fall Risk Assessment
System Using Kinect. 40th Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society. 18-21 July 2018. Honolulu, HI, USA.
Torabi, H., Mirtaheri, S. L., Greco, S. (2023). Practical
autoencoder based anomaly detection by using vector
reconstruction error. Cybersecurity, vol.6, no.1.
Wang, S., Miranda, F., Wang, Y., Rasheed, R. and Bhatt,
T. (2022). near-Fall Detection in Unexpected Slips
during over-Ground Locomovement with Body-Worn
Sensors among Older Adults. Sensors, 22(9), 3334.
Wang, T., Hsieh, Y-Y., Wong, F-W., Chen, T-F. (2019).
Mask-RCNN Based People Detection Using a Top-
View Fisheye Camera. Intl Conf. on Technologies and
Applications of Artificial Intelligence. 21-23 Nov. 2019.
Kaohsiung, Taiwan.
Yang, S-W., Lin, S-K. (2014). Fall detection for multiple
pedestrians using depth image processing technique.
Computer Methods and Programs in Biomedicine.
Volume 114, Issue 2, Pages 172-182.
Yang, K., Ahn, C., R., Vuran, M., C., Aria, S., S. (2016).
Semi-supervised near-miss fall detection for
ironworkers with a wearable inertial measurement unit.
Automation in Construction. V. 68, Pages 194-202.
Yu, X., Wan, J., An, G., Yin, X., Xiong, S. (2024). A novel
semi-supervised model for pre-impact fall detection
with limited fall data. Engineering Applications of
Artificial Intelligence. Volume 132. 108469.
Zhu, N., Zhao, G., Zhang, X., Jin, X. (2021). Falling
movement detection algorithm based on deep learning.
IET Image Processing. 16(11).
Zigel, Y., Litvak, D., Gannot, I. (2009). A Method for
Automatic Fall Detection of Elderly People Using Floor
Vibrations and Sound—Proof of Concept on Human
Mimicking Doll Falls. IEEE Transactions on
Biomedical Engineering, V. 56(12). Page(s): 2858 –
2867.