
REFERENCES
Arun, P. V., Buddhiraju, K. M., Porwal, A., and Chanussot,
J. (2020). Cnn-based super-resolution of hyperspec-
tral images. IEEE Transactions on Geoscience and
Remote Sensing, 58(9):6106–6121.
Chen, H., Zhao, W., Xu, T., Shi, G., Zhou, S., Liu, P., and
Li, J. (2023). Spectral-wise implicit neural represen-
tation for hyperspectral image reconstruction. IEEE
Transactions on Circuits and Systems for Video Tech-
nology.
Chen, Y., Liu, S., and Wang, X. (2021a). Learning contin-
uous image representation with local implicit image
function. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 8628–8638.
Chen, Y., Liu, S., and Wang, X. (2021b). Learning con-
tinuous image representation with local implicit im-
age function. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 8628–8638.
Dong, C., Loy, C. C., and Tang, X. (2016). Accelerating
the super-resolution convolutional neural network. In
Computer Vision–ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11-
14, 2016, Proceedings, Part II 14, pages 391–407.
Springer.
Hu, X., Mu, H., Zhang, X., Wang, Z., Tan, T., and Sun, J.
(2019). Meta-sr: A magnification-arbitrary network
for super-resolution. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 1575–1584.
Jiang, J., Sun, H., Liu, X., and Ma, J. (2020). Learn-
ing spatial-spectral prior for super-resolution of hy-
perspectral imagery. IEEE Transactions on Compu-
tational Imaging, 6:1082–1096.
Kingma, D. P. (2014). Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980.
Kruse, F. A., Lefkoff, A., Boardman, y. J., Heidebrecht, K.,
Shapiro, A., Barloon, P., and Goetz, A. (1993). The
spectral image processing system (sips)—interactive
visualization and analysis of imaging spectrometer
data. Remote sensing of environment, 44(2-3):145–
163.
Li, J., Yuan, Q., Shen, H., Meng, X., and Zhang, L. (2016).
Hyperspectral image super-resolution by spectral mix-
ture analysis and spatial–spectral group sparsity. IEEE
Geoscience and Remote Sensing Letters, 13(9):1250–
1254.
Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ra-
mamoorthi, R., and Chandraker, M. (2021). Mod-
ulated periodic activations for generalizable local
functional representations. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 14214–14223.
Mei, S., Yuan, X., Ji, J., Zhang, Y., Wan, S., and Du, Q.
(2017). Hyperspectral image spatial super-resolution
via 3d full convolutional neural network. Remote
Sensing, 9(11):1139.
Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. (2021). Nerf: Repre-
senting scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106.
NASA Jet Propulsion Laboratory (1997). Cuprite hyper-
spectral dataset. https://aviris.jpl.nasa.gov/data/free
data.html.
Nguyen, Q. H. and Beksi, W. J. (2023). Single image super-
resolution via a dual interactive implicit neural net-
work. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV),
pages 4936–4945.
Shi, W., Caballero, J., Husz
´
ar, F., Totz, J., Aitken, A. P.,
Bishop, R., Rueckert, D., and Wang, Z. (2016). Real-
time single image and video super-resolution using an
efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 1874–1883.
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wet-
zstein, G. (2020). Implicit neural representations with
periodic activation functions. Advances in neural in-
formation processing systems, 33:7462–7473.
Tang, J., Chen, X., and Zeng, G. (2021). Joint implicit
image function for guided depth super-resolution. In
Proceedings of the 29th acm international conference
on multimedia, pages 4390–4399.
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., and
Wang, W. (2021). Neus: Learning neural implicit sur-
faces by volume rendering for multi-view reconstruc-
tion. arXiv preprint arXiv:2106.10689.
Wang, Y., Chen, X., Han, Z., and He, S. (2017). Hyperspec-
tral image super-resolution via nonlocal low-rank ten-
sor approximation and total variation regularization.
Remote Sensing, 9(12):1286.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visi-
bility to structural similarity. IEEE transactions on
image processing, 13(4):600–612.
Wang, Z., Chen, J., and Hoi, S. C. H. (2019). Deep learning
for image super-resolution: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
43:3365–3387.
Yokoya, N. and Iwasaki, A. (2016). Airborne hyperspectral
data over chikusei. Space Appl. Lab., Univ. Tokyo,
Tokyo, Japan, Tech. Rep. SAL-2016-05-27, 5(5):5.
Zhang, K., Zhu, D., Min, X., and Zhai, G. (2022). Implicit
neural representation learning for hyperspectral image
super-resolution. IEEE Transactions on Geoscience
and Remote Sensing, 61:1–12.
Zhang, M., Zhang, C., Zhang, Q., Guo, J., Gao, X., and
Zhang, J. (2023). Essaformer: Efficient transformer
for hyperspectral image super-resolution. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 23073–23084.
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., and Fu, Y. (2018).
Residual dense network for image super-resolution. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2472–2481.
Single Hyperspectral Image Super-Resolution Utilizing Implicit Neural Representations
635