
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. (2020). An image is
worth 16x16 words: Transformers for image recogni-
tion at scale. arXiv preprint arXiv:2010.11929.
Durkee, M. S., Abraham, R., Clark, M. R., and Giger, M. L.
(2021). Artificial intelligence and cellular segmenta-
tion in tissue microscopy images. The American jour-
nal of pathology, 191(10):1693–1701.
Edlund, C., Jackson, T. R., Khalid, N., Bevan, N., Dale,
T., Dengel, A., Ahmed, S., Trygg, J., and Sj
¨
ogren, R.
(2021). Livecell—a large-scale dataset for label-free
live cell segmentation. Nature methods, 18(9):1038–
1045.
Harley, A. W., Fang, Z., and Fragkiadaki, K. (2022). Parti-
cle video revisited: Tracking through occlusions using
point trajectories. In European Conference on Com-
puter Vision. Springer.
Jelli, E., Ohmura, T., Netter, N., Abt, M., Jim
´
enez-Siebert,
E., Neuhaus, K., Rode, D. K., Nadell, C. D., and
Drescher, K. (2023). Single-cell segmentation in
bacterial biofilms with an optimized deep learning
method enables tracking of cell lineages and mea-
surements of growth rates. Molecular Microbiology,
119(6):659–676.
Khalid, N., Froes, T. C., Caroprese, M., Lovell, G., Trygg,
J., Dengel, A., and Ahmed, S. (2023). Pace: Point
annotation-based cell segmentation for efficient mi-
croscopic image analysis. In International Conference
on Artificial Neural Networks. Springer.
Khalid, N., Schmeisser, F., Koochali, M., Munir, M., Ed-
lund, C., Jackson, T. R., Trygg, J., Sj
¨
ogren, R., Den-
gel, A., and Ahmed, S. (2022). Point2mask: a
weakly supervised approach for cell segmentation us-
ing point annotation. In Annual Conference on Med-
ical Image Understanding and Analysis, pages 139–
153. Springer.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C.,
Lo, W.-Y., et al. (2023). Segment anything. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision.
Leal-Taix
´
e, L., Milan, A., Reid, I., Roth, S., and Schindler,
K. (2015). Motchallenge 2015: Towards a bench-
mark for multi-target tracking. arXiv preprint
arXiv:1504.01942.
Malin-Mayor, C., Hirsch, P., Guignard, L., McDole, K.,
Wan, Y., Lemon, W. C., Kainmueller, D., Keller, P. J.,
Preibisch, S., and Funke, J. (2023). Automated recon-
struction of whole-embryo cell lineages by learning
from sparse annotations. Nature biotechnology.
Ma
ˇ
ska, M., Ulman, V., Delgado-Rodriguez, P., G
´
omez-de
Mariscal, E., Ne
ˇ
casov
´
a, T., Guerrero Pe
˜
na, F. A., Ren,
T. I., Meyerowitz, E. M., Scherr, T., L
¨
offler, K., et al.
(2023). The cell tracking challenge: 10 years of ob-
jective benchmarking. Nature Methods, 20(7):1010–
1020.
Matthews, S. A., Coelho, C., Rodriguez Salas, E. E., Brock,
E. E., Hodge, V. J., Walker, J. A., and Wilson, L. G.
(2024). Real-time 3d tracking of swimming microbes
using digital holographic microscopy and deep learn-
ing. Plos one, 19(4):e0301182.
Newman, R. H., Fosbrink, M. D., and Zhang, J. (2011). Ge-
netically encodable fluorescent biosensors for track-
ing signaling dynamics in living cells. Chemical re-
views, 111(5):3614–3666.
Padovani, F., Mairh
¨
ormann, B., Falter-Braun, P., Lengefeld,
J., and Schmoller, K. M. (2022). Segmentation, track-
ing and cell cycle analysis of live-cell imaging data
with cell-acdc. BMC biology.
Pape, C. (2023). torch-em: Deep learning based semantic
and instance segmentation for 3d electron microscopy
and other bioimage analysis problems based on py-
torch.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). Pytorch: An imperative style,
high-performance deep learning library. In Advances
in neural information processing systems.
Raji
ˇ
c, F., Ke, L., Tai, Y.-W., Tang, C.-K., Danelljan, M., and
Yu, F. (2023). Segment anything meets point tracking.
arXiv preprint arXiv:2307.01197.
Ristani, E., Solera, F., Zou, R., Cucchiara, R., and Tomasi,
C. (2016). Performance measures and a data set for
multi-target, multi-camera tracking. In European con-
ference on computer vision. Springer.
Romphosri, S., Pissuwan, D., Wattanavichean, N.,
Buabthong, P., and Waritanant, T. (2024). Rapid
alignment-free bacteria identification via optical scat-
tering with leds and yolov8. Scientific Reports,
14(1):20498.
Shi, J. et al. (1994). Tomasi. good features to track. In 1994
Proceedings of IEEE conference on computer vision
and pattern recognition. sn.
Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M.
(2020). Cellpose: a generalist algorithm for cellular
segmentation. Nature Methods.
Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2023a).
Yolov7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7464–7475.
Wang, R., Butt, D., Cross, S., Verkade, P., and Achim, A.
(2023b). Bright-field to fluorescence microscopy im-
age translation for cell nuclei health quantification. Bi-
ological Imaging, 3:e12.
Yazdi, R. and Khotanlou, H. (2024). A survey on automated
cell tracking: challenges and solutions. Multimedia
Tools and Applications.
Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z.,
Luo, P., Liu, W., and Wang, X. (2022). Bytetrack:
Multi-object tracking by associating every detection
box. In European conference on computer vision.
Springer.
SAT: Segment and Track Anything for Microscopy
297