
Efficient Training of Large Language Models on Dis-
tributed Infrastructures: A Survey.
Funchal, G., Pedrosa, T., Prieta, F. D. L., and Leitao, P.
(2024). Edge Multi-agent Intrusion Detection System
Architecture for IoT Devices with Cloud Continuum.
In 2024 IEEE 7th ICPS.
Ghosh, S., Mukherjee, A., Ghosh, S. K., and Buyya,
R. (2020). Mobi-IoST: Mobility-Aware Cloud-Fog-
Edge-IoT Collaborative Framework for Time-Critical
Applications. IEEE Transactions on Network Science
and Engineering, 7(4):2271–2285.
Gyamfi, E. and Jurcut, A. (2022). Intrusion Detec-
tion in Internet of Things Systems: A Review on
Design Approaches Leveraging Multi-Access Edge
Computing, Machine Learning, and Datasets. Sen-
sors, 22(10):3744.
Hamouda, D., Ferrag, M. A., Benhamida, N., and Seridi,
H. (2021). Intrusion Detection Systems for Industrial
Internet of Things: A Survey. In 2021 ICTAACS.
IBM Security (2023). Cost of a Data Breach Report. https:
//www.ibm.com/reports/data-breach.
Jennings, N. R. (2001). An agent-based approach for build-
ing complex software systems. Communications of
the ACM, 44(4):35–41.
Jia, Z., Zaharia, M., and Aiken, A. (2018). Beyond Data
and Model Parallelism for Deep Neural Networks.
Kagermann, H., Wahlster, W., and Helbig, J. (2013). Se-
curing the Future of German Manufacturing Indus-
try: Recommendations for Implementing the Strategic
Initiative INDUSTRIE 4.0. Technical report, ACAT-
ECH.
Khouas, A. R., Bouadjenek, M. R., Hacid, H., and Aryal,
S. (2024). Training Machine Learning models at the
Edge: A Survey.
Kong, L., Tan, J., Huang, J., Chen, G., Wang, S., Jin, X.,
Zeng, P., Khan, M., and Das, S. K. (2022). Edge-
computing-driven Internet of Things: A Survey. ACM
Computing Surveys, 55(8):1–41.
Leit
˜
ao, P. (2009). Agent-based distributed manufacturing
control: A state-of-the-art survey. Engineering Appli-
cations of Artificial Intelligence, 22(7):979–991. Dis-
tributed Control of Production Systems.
Leit
˜
ao, P., Colombo, A. W., and Karnouskos, S. (2016). In-
dustrial automation based on cyber-physical systems
technologies: Prototype implementations and chal-
lenges. Computers in Industry, 81:11–25. Emerging
ICT concepts for smart, safe and sustainable industrial
systems.
Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen,
R., Zhou, Y., Kumar, N., Norouzi, M., Bengio, S., and
Dean, J. (2017). Device Placement Optimization with
Reinforcement Learning.
Mohy-eddine, M., Guezzaz, A., Benkirane, S., and Azrour,
M. (2022). An effective intrusion detection approach
based on ensemble learning for IIoT edge comput-
ing. Journal of Computer Virology and Hacking Tech-
niques, 19(4):469–481.
Mwase, C., Jin, Y., Westerlund, T., Tenhunen, H., and Zou,
Z. (2022). Communication-efficient distributed AI
strategies for the IoT edge. Future Generation Com-
puter Systems, 131:292–308.
Neto, E. C. P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu,
R., and Ghorbani, A. A. (2023). CICIoT2023: A Real-
Time Dataset and Benchmark for Large-Scale Attacks
in IoT Environment. Sensors, 23(13).
Popescu, D., Zilberman, N., and Moore, A. (2017). Charac-
terizing the impact of network latency on cloud-based
applications’ performance. Technical report.
Pourrahmani, H., Yavarinasab, A., Monazzah, A. M. H.,
and Van herle, J. (2023). A review of the security
vulnerabilities and countermeasures in the Internet of
Things solutions: A bright future for the Blockchain.
Internet of Things, 23:100888.
Prazeres, N., de C. Costa, R. L., Santos, L., and Rabad
˜
ao, C.
(2023). Engineering the application of machine learn-
ing in an IDS based on IoT traffic flow. Intelligent
Systems with Applications, 17:200189.
Qadir, J., Sainz-De-Abajo, B., Khan, A., Garc
´
ıa-Zapirain,
B., De La Torre-D
´
ıez, I., and Mahmood, H. (2020).
Towards Mobile Edge Computing: Taxonomy, Chal-
lenges, Applications and Future Realms. IEEE Ac-
cess, 8:189129–189162.
Queiroz, J., Leit
˜
ao, P., Barbosa, J., and Oliveira, E. (2019).
Distributing Intelligence among Cloud, Fog and Edge
in Industrial Cyber-physical Systems. In Proceed-
ings of the 16th ICINCO. SCITEPRESS - Science and
Technology Publications.
Quy, N. M., Ngoc, L. A., Ban, N. T., Hau, N. V., and Quy,
V. K. (2023). Edge computing for real-time Internet of
Things applications: Future internet revolution. Wire-
less Personal Communications, 132(2):1423–1452.
Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge
Computing: Vision and Challenges. IEEE Internet of
Things Journal, 3(5):637–646.
Tyagi, S. and Tyagi, A. (2024). Edge Computing: Empow-
ering Real-Time Data Processing and Connectivity.
Wang, H., Liu, T., Kim, B., Lin, C., Shiraishi, S., Xie, J. L.,
and Han, Z. (2020a). Architectural Design Alterna-
tives based on Cloud/Edge/Fog Computing for Con-
nected Vehicles. CoRR, abs/2009.12509.
Wang, Y. E., Wu, C.-J., Wang, X., Hazelwood, K., and
Brooks, D. (2020b). Exploiting Parallelism Oppor-
tunities with Deep Learning Frameworks.
Wooldridge, M. (2009). An Introduction to MultiAgent Sys-
tems. Wiley.
Xie, R., Tang, Q., Wang, Q., Liu, X., Yu, F. R., and Huang,
T. (2019). Collaborative Vehicular Edge Computing
Networks: Architecture Design and Research Chal-
lenges. IEEE Access, 7:178942–178952.
Yang, R., He, H., Xu, Y., Xin, B., Wang, Y., Qu, Y., and
Zhang, W. (2023). Efficient intrusion detection toward
IoT networks using cloud–edge collaboration. Com-
puter Networks, 228:109724.
Zhou, Z.-H. and Zhou, Z.-H. (2021). Ensemble learning.
Springer.
Distributed Machine Learning and Multi-Agent Systems for Enhanced Attack Detection and Resilience in IoT Networks
203