
tum machine learning in a higgs physics study at the
cepc. arXiv preprint arXiv:2209.12788.
Ghosh, K. J. and Ghosh, S. (2023). Classical and quantum
machine learning applications in spintronics. Digital
Discovery, 2(2):512–519.
Gujju, Y., Matsuo, A., and Raymond, R. (2024). Quantum
machine learning on near-term quantum devices: Cur-
rent state of supervised and unsupervised techniques
for real-world applications. Physical Review Applied,
21(6):067001.
Hanushek, E. A. and Woessmann, L. (2010). Education and
economic growth. Economics of Education, 60(67):1.
IBM (2023). The hardware and software for the era of quan-
tum utility is here. Accessed: 2024-07-18.
Javadi-Abhari, A., Treinish, M., Krsulich, K., Wood, C. J.,
Lishman, J., Gacon, J., Martiel, S., Nation, P. D.,
Bishop, L. S., Cross, A. W., Johnson, B. R., and Gam-
betta, J. M. (2024). Quantum computing with Qiskit.
Jinich, A., Sanchez-Lengeling, B., Ren, H., Harman, R.,
and Aspuru-Guzik, A. (2019). A mixed quantum
chemistry/machine learning approach for the fast and
accurate prediction of biochemical redox potentials
and its large-scale application to 315 000 redox reac-
tions. ACS Central Science, 5(7):1199–1210.
Lachure, S., Lohidasan, A., Tiwari, A., Dhabu, M., and
Bokde, N. (2023). Quantum machine learning ap-
plications to address climate change: A short review,
pages 65–83. Advances in Systems Analysis, Soft-
ware Engineering, and High Performance Computing
(ASASEHPC). IGI global.
Learning, I. Q. (2023). Quantum machine learning course.
Accessed: 2024-07-23.
Miller, L., Uehara, G., Sharma, A., and Spanias, A. (2023).
Quantum machine learning for optical and sar clas-
sification. In 2023 24th International Conference on
Digital Signal Processing (DSP), pages 1–5. IEEE.
Nath, R. K., Thapliyal, H., and Humble, T. S. (2021). A re-
view of machine learning classification using quantum
annealing for real-world applications. SN Computer
Science, 2(5):365.
Payares, E. and Mart
´
ınez, J. C. (2023). The enhancement
of quantum machine learning models via quantum
fourier transform in near-term applications. In AIP
Conference Proceedings, volume 2872. AIP Publish-
ing.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. Journal of Maching
Learning Research, 12:pp.2825–2830.
Peral-Garc
´
ıa, D., Cruz-Benito, J., and Garc
´
ıa-Pe
˜
nalvo, F. J.
(2024). Systematic literature review: Quantum ma-
chine learning and its applications. Computer Science
Review, 51:100619.
Pomarico, D., Fanizzi, A., Amoroso, N., Bellotti, R., Bi-
afora, A., Bove, S., Didonna, V., Forgia, D. L., Pas-
tena, M. I., Tamborra, P., et al. (2021). A proposal of
quantum-inspired machine learning for medical pur-
poses: An application case. Mathematics, 9(4):410.
Poulard, H. and Est
`
eve, D. (1995). A convergence theorem
for barycentric correction procedure. Soumisa Neural
Computation.
Poulard, H. and Labreche, S. (1995). A new unit learning
algorithm. ipi, 10:i2I1.
Prabhu, S., Gupta, S., Prabhu, G. M., Dhanuka, A. V., and
Bhat, K. V. (2023). Qucardio: Application of quan-
tum machine learning for detection of cardiovascular
diseases. IEEE Access, 11:136122–136135.
Rahimi, M. and Asadi, F. (2023). Oncological applications
of quantum machine learning. Technology in Cancer
Research and Treatment, 22:15330338231215214.
Ramos-Pulido, S., Hern
´
andez-Gress, N., and Ceballos-
Cancino, H. G. (2024). Machine learning training op-
timization using the barycentric correction procedure.
In 5th International Conference on Artificial Intelli-
gence and Big Data (AIBD 2024), volume 14, pages
189–198.
Research, G. (2024). Google colaboratory. Accessed: 2024-
07-18.
Singh, S. (2023). The role of quantum computers in the
future of ai and data. Accessed: 2024-08-15.
Team, Q. M. L. D. (2024). Machine learning tutorials. Ac-
cessed: 2024-07-15.
Turtletaub, I., Li, G., Ibrahim, M., and Franzon, P. (2020).
Application of quantum machine learning to vlsi
placement. In Proceedings of the 2020 ACM/IEEE
Workshop on Machine Learning for CAD, pages 61–
66, New York, NY, USA. Association for Computing
Machinery.
Ullah, U. and Garcia-Zapirain, B. (2024). Quantum ma-
chine learning revolution in healthcare: a system-
atic review of emerging perspectives and applications.
IEEE Access, 12:11423–11450.
Upama, P. B., Kolli, A., Kolli, H., Alam, S., Syam, M.,
Shahriar, H., and Ahamed, S. I. (2023). Quantum ma-
chine learning in disease detection and prediction: A
survey of applications and future possibilities. In 2023
IEEE 47th Annual Computers, Software, and Appli-
cations Conference (COMPSAC), pages 1545–1551.
IEEE.
Veps
¨
al
¨
ainen, A., Winik, R., Karamlou, A. H., Braum
¨
uller,
J., Paolo, A. D., Sung, Y., Kannan, B., Kjaergaard, M.,
Kim, D. K., Melville, A. J., et al. (2022). Improving
qubit coherence using closed-loop feedback. Nature
Communications, 13(1):1932.
Vijay, A., Bhargava, H., Pareek, A., Suravajhala, P., and
Sharma, A. (2023). Quantum Machine Learning for
Biological Applications, pages 75–86. Chapman and
Hall/CRC.
Wu, S. L., Chan, J., Cheng, A., Guan, W., Sun, S., Zhang,
R., Zhou, C., Livny, M., Meglio, A., Li, A., et al.
(2022). Application of quantum machine learning to
hep analysis at lhc using quantum computer simula-
tors and quantum computer hardware. In European
Physical Society Conference on High Energy Physics,
page 842.
Wu, S. L., Chan, J., Guan, W., Sun, S., Wang, A., Zhou,
C., Livny, M., Carminati, F., Di Meglio, A., Li, A. C.,
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
486