
REFERENCES
Badaroglu, M. (2021). More moore. In 2021 IEEE Inter-
national Roadmap for Devices and Systems Outbriefs,
pages 01–38.
Binder, D., Smith, E. C., and Holman, A. B. (1975). Satel-
lite anomalies from galactic cosmic rays. IEEE Trans-
actions on Nuclear Science, 22(6):2675–2680.
Bolchini, C., Cassano, L., Miele, A., and Nazzari, A.
(2022). Selective hardening of cnns based on layer
vulnerability estimation. In 2022 IEEE International
Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), pages 1–6.
Bolchini, C., Cassano, L., Miele, A., and Toschi, A. (2023).
Fast and accurate error simulation for cnns against soft
errors. IEEE Transactions on Computers, 72(4):984–
997.
Bosio, A., Bernardi, P., Ruospo, A., and Sanchez, E. (2019).
A reliability analysis of a deep neural network. In
2019 IEEE Latin American Test Symposium (LATS),
pages 1–6.
Bureau, A. T. S. (2008). In-flight upset 154 km west of
learmonth. Australian Transport Safety Bureau.
Hammell, R. (2018). Ships in satellite imagery.
Hari, S. K. S., Tsai, T., Stephenson, M., Keckler, S. W., and
Emer, J. (2017). Sassifi: An architecture-level fault
injection tool for gpu application resilience evalua-
tion. In 2017 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS),
pages 249–258.
Hornik, K., Stinchcombe, M., and White, H. (1989). Multi-
layer feedforward networks are universal approxima-
tors. Neural Networks, 2(5):359–366.
Huang, K.-H. and Abraham, J. A. (1984). Algorithm-based
fault tolerance for matrix operations. IEEE Transac-
tions on Computers, C-33(6):518–528.
IBM (2024). Neural networks. https://www.ibm.com/
topics/neural-networks. Accessed: 2024-08-26.
Ibrahim, Y., Wang, H., Liu, J., Wei, J., Chen, L., Rech, P.,
Adam, K., and Guo, G. (2020). Soft errors in dnn ac-
celerators: A comprehensive review. Microelectronics
Reliability, 115:113969.
IEEE754 (2019). IEEE Standard for Floating-Point Arith-
metic. IEEE Std 754-2019 (Revision of IEEE 754-
2008), pages 1–84.
Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. Technical Report.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C., Bottou, L.,
and Weinberger, K., editors, Advances in Neural In-
formation Processing Systems, volume 25. Curran As-
sociates, Inc.
Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The
expressive power of neural networks: A view from the
width.
Moore, G. (1998). Cramming more components onto inte-
grated circuits. Proceedings of the IEEE , 86(1):82–85.
Peterson, E. (2011). Introduction, chapter 1, pages 1–12.
John Wiley & Sons, Ltd.
Pilla, L. L., Rech, P., Silvestri, F., Frost, C., Navaux, P.
O. A., Reorda, M. S., and Carro, L. (2014). Software-
based hardening strategies for neutron sensitive fft al-
gorithms on gpus. IEEE Transactions on Nuclear Sci-
ence, 61(4):1874–1880.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. (2019). Language models are unsuper-
vised multitask learners.
Rech, P. (2024). Artificial neural networks for space and
safety-critical applications: Reliability issues and po-
tential solutions. IEEE Transactions on Nuclear Sci-
ence, 71(4):377–404.
Rech Junior, R. L., Malde, S., Cazzaniga, C., Kastriotou,
M., Letiche, M., Frost, C., and Rech, P. (2022). High
energy and thermal neutron sensitivity of google ten-
sor processing units. IEEE Transactions on Nuclear
Science, 69(3):567–575.
Santos, F. F. d., Pimenta, P. F., Lunardi, C., Draghetti, L.,
Carro, L., Kaeli, D., and Rech, P. (2019). Analyzing
and increasing the reliability of convolutional neural
networks on gpus. IEEE Transactions on Reliability,
68(2):663–677.
Science and Technology Facilities Council (2024). Chipir.
[Accessed 01-10-2024].
Sequin, C. and Clay, R. (1990). Fault tolerance in artifi-
cial neural networks. In 1990 IJCNN International
Joint Conference on Neural Networks, pages 703–708
vol.1.
Shalev-Shwartz, S. and Ben-David, S. (2014). Understand-
ing Machine Learning: From Theory to Algorithms.
Cambridge University Press. Chapter 13: Regulariza-
tion and Stability.
Su, F., Liu, C., and Stratigopoulos, H.-G. (2023). Testabil-
ity and dependability of ai hardware: Survey, trends,
challenges, and perspectives. IEEE Design & Test,
40(2):8–58.
VAN ALLEN, J. A., LUDWIG, G. H., RAY, E. C., and
McILWAIN, C. E. (1958). Observation of high in-
tensity radiation by satellites 1958 alpha and gamma.
Journal of Jet Propulsion, 28(9):588–592.
Wallmark, J. T. and Marcus, S. M. (1962). Minimum
size and maximum packing density of nonredundant
semiconductor devices. Proceedings of the IRE,
50(3):286–298.
A Framework for Developing Robust Machine Learning Models in Harsh Environments: A Review of CNN Design Choices
333