
Fan, Z., Gou, J., and Weng, S. (2024). A feature
importance-based multi-layer catboost for student per-
formance prediction. IEEE Transactions on Knowl-
edge and Data Engineering.
Guo, S., Lin, Y., Feng, N., Song, C., and Wan, H. (2019).
Attention based spatial-temporal graph convolutional
networks for traffic flow forecasting. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 33, pages 922–929.
Hakkal, S. and Lahcen, A. A. (2024). Xgboost to enhance
learner performance prediction. Computers and Edu-
cation: Artificial Intelligence, page 100254.
Han, L., Chen, X.-Y., Ye, H.-J., and Zhan, D.-C.
(2024). Softs: Efficient multivariate time series
forecasting with series-core fusion. arXiv preprint
arXiv:2404.14197.
Jiang, J., Han, C., Zhao, W. X., and Wang, J. (2023).
Pdformer: Propagation delay-aware dynamic long-
range transformer for traffic flow prediction. In Pro-
ceedings of the AAAI conference on artificial intelli-
gence, volume 37, pages 4365–4373.
Li, X., Shi, L., Shi, Y., Tang, J., Zhao, P., Wang, Y., and
Chen, J. (2024). Exploring interactive and nonlinear
effects of key factors on intercity travel mode choice
using xgboost. Applied Geography, 166:103264.
Liu, H., Dong, Z., Jiang, R., Deng, J., Deng, J., Chen,
Q., and Song, X. (2023). Spatio-temporal adaptive
embedding makes vanilla transformer sota for traffic
forecasting. In Proceedings of the 32nd ACM interna-
tional conference on information and knowledge man-
agement, pages 4125–4129.
Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A. X.,
and Dustdar, S. (2021). Pyraformer: Low-complexity
pyramidal attention for long-range time series model-
ing and forecasting. In International conference on
learning representations.
Luo, X., Li, D., Yang, Y., and Zhang, S. (2019). Spatiotem-
poral traffic flow prediction with knn and lstm. Jour-
nal of Advanced Transportation, 2019(1):4145353.
Mohsin, S. M., Javaid, N., Madani, S. A., Akber, S. M. A.,
Manzoor, S., and Ahmad, J. (2018). Implementing
elephant herding optimization algorithm with differ-
ent operation time intervals for appliance scheduling
in smart grid. In 2018 32nd International Confer-
ence on Advanced Information Networking and Ap-
plications Workshops (WAINA), pages 240–249.
Mohsin, S. M., Khan, I. A., Abrar Akber, S. M., Shamshir-
band, S., and Chronopoulos, A. T. (2021). Exploring
the rfid mutual authentication domain. International
Journal of Computers and Applications, 43(2):127–
141.
Shah, I., Muhammad, I., Ali, S., Ahmed, S., Almazah,
M. M., and Al-Rezami, A. (2022). Forecasting day-
ahead traffic flow using functional time series ap-
proach. Mathematics, 10(22):4279.
Shao, Z., Zhang, Z., Wei, W., Wang, F., Xu, Y., Cao, X.,
and Jensen, C. S. (2022). Decoupled dynamic spatial-
temporal graph neural network for traffic forecasting.
arXiv preprint arXiv:2206.09112.
Trachanatzi, D., Rigakis, M., Marinaki, M., and Marinakis,
Y. (2020). An interactive preference-guided firefly
algorithm for personalized tourist itineraries. Expert
Systems with Applications, 159:113563.
Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long,
M. (2022). Timesnet: Temporal 2d-variation model-
ing for general time series analysis. arXiv preprint
arXiv:2210.02186.
Zeng, A., Chen, M., Zhang, L., and Xu, Q. (2023). Are
transformers effective for time series forecasting? In
Proceedings of the AAAI conference on artificial intel-
ligence, volume 37, pages 11121–11128.
Zhang, L. and J
´
ano
ˇ
s
´
ık, D. (2024). Enhanced short-term
load forecasting with hybrid machine learning mod-
els: Catboost and xgboost approaches. Expert Systems
with Applications, 241:122686.
Zhang, T. and Guo, G. (2020). Graph attention lstm: A
spatiotemporal approach for traffic flow forecasting.
IEEE Intelligent Transportation Systems Magazine,
14(2):190–196.
Zheng, G., Chai, W. K., Duanmu, J.-L., and Katos, V.
(2023). Hybrid deep learning models for traffic pre-
diction in large-scale road networks. Information Fu-
sion, 92:93–114.
Zheng, J. and Huang, M. (2020). Traffic flow forecast
through time series analysis based on deep learning.
IEEE Access, 8:82562–82570.
Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin,
R. (2022). Fedformer: Frequency enhanced decom-
posed transformer for long-term series forecasting. In
International conference on machine learning, pages
27268–27286. PMLR.
ForecastBoost: An Ensemble Learning Model for Road Traffic Forecasting
495