transportation application in Qatar and found that the
assessment with the proposed model can help make
risk management decisions.
Future research can investigate the interrelations
between smart mobility risks, apply the Bayesian
Network and theory, and produce a decision-making
criterion for this significant smart city dimension.
Another aspect of future research is investigating
the transferred risks from the design or
implementation phases of the smart city application
lifecycle. Finding a way to consider them in
probability calculations will provide robust results
when the decision-making criteria are built.
REFERENCES
Acebes, F., González-Varona, J. M., López-Paredes, A., &
Pajares, J. (2024). Beyond probability-impact matrices
in project risk management: A quantitative
methodology for risk prioritisation. Humanities and
Social Sciences Communications, 11(1), 1–13.
https://doi.org/10.1057/s41599-024-03180-5
Alanazi, F., & Alenezi, M. (2024). Interoperability for
intelligent traffic management systems in smart cities.
International Journal of Electrical and Computer
Engineering, 14(2), 1864–1874. https://doi.org/10.
11591/ijece.v14i2.pp1864-1874
Alawad, H., An, M., & Kaewunruen, S. (2020). Utilizing an
adaptive neuro-fuzzy inference system (ANFIS) for
overcrowding level risk assessment in railway stations.
Applied Sciences (Switzerland), 10(15). https://doi.
org/10.3390/app10155156
Ande, R., Adebisi, B., Hammoudeh, M., & Saleem, J.
(2020). Internet of Things: Evolution and technologies
from a security perspective. Sustainable Cities and
Society, 54(February 2019), 101728. https://doi.org/10.
1016/j.scs.2019.101728
Appio, F. P., Lima, M., & Paroutis, S. (2019).
Understanding Smart Cities: Innovation ecosystems,
technological advancements, and societal challenges.
Technological Forecasting and Social Change,
142(December 2018), 1–14. https://doi.org/10.1016/j.
techfore.2018.12.018
Awasthi, A., & Chauhan, S. S. (2011). Using AHP and
Dempster-Shafer theory for evaluating sustainable
transport solutions. Environmental Modelling and
Software, 26(6), 787–796. https://doi.org/10.1016/j.
envsoft.2010.11.010
Damasiotis, V. (2022). Modeling Project Management
Complexity in Smart Cities’ Projects. In P. Fitsilis
(Ed.), Building on Smart Cities Skills and
Competences: Human factors affecting smart cities
development (pp. 169–183). Springer International
Publishing. https://doi.org/10.1007/978-3-030-97818-
1_10
Dempster, A. P. (1968). A Generalization of Bayesian
Inference. Journal of the Royal Statistical Society:
Series B (Methodological), 30(2), 205–232.
https://doi.org/10.1111/j.2517-6161.1968.tb00722.x
Deveci, M., Pekaslan, D., & Canıtez, F. (2020). The
assessment of smart city projects using zSlice type-2
fuzzy sets based Interval Agreement Method.
Sustainable Cities and Society, 53(August 2019).
https://doi.org/10.1016/j.scs.2019.101889
Domingos, P., Rita, A., Terra, T., & Ignácio, S. R. (2008).
FMEA as a Tool for Managing Risks in ICT Projects ,
based on the PMBOK. Asian Journal of Business and
Management Sciences, 3(12), 1–24.
Fernandez-Anez, V., Velazquez, G., Perez-Prada, F., &
Monzón, A. (2018). Smart City Projects Assessment
Matrix: Connecting Challenges and Actions in the
Mediterranean Region. Journal of Urban Technology,
0(0), 1–25. https://doi.org/10.1080/10630732.
2018.1498706
Hasija, S., Shen, Z. J. M., & Teo, C. P. (2020). Smart city
operations: Modeling challenges and opportunities.
Manufacturing and Service Operations Management,
22(1), 203–213. https://doi.org/10.1287/msom.
2019.0823
Ismagilova, E., Hughes, L., Dwivedi, Y. K., & Raman, K.
R. (2019). Smart cities: Advances in research—An
information systems perspective. International Journal
of Information Management, 47(December 2018), 88–
100. https://doi.org/10.1016/j.ijinfomgt.2019.01.004
Lacinák, M. (2021). Resilience of the Smart Transport
System - Risks and Aims. Transportation Research
Procedia, 55, 1635–1640. https://doi.org/10.1016/j.
trpro.2021.07.153
Lee, I. (2020). Internet of Things (IoT) Cybersecurity:
Literature Review and IoT Cyber Risk Management.
Future Internet, 12(9), 157. https://doi.org/10.
3390/fi12090157
Oladimeji, D., Gupta, K., Kose, N. A., Gundogan, K., Ge,
L., & Liang, F. (2023). Smart Transportation: An
Overview of Technologies and Applications. Sensors,
23(8), 1–32. https://doi.org/10.3390/s23083880
Paiva, S., Ahad, M. A., Tripathi, G., Feroz, N., & Casalino,
G. (2021). Enabling technologies for urban smart
mobility: Recent trends, opportunities and challenges.
Sensors, 21(6), 1–45. https://doi.org/10.3390/s21062143
Patrão, C., Moura, P., & Almeida, A. T. de. (2020). Review
of Smart City Assessment Tools. Smart Cities, 3(4),
1117–1132. https://doi.org/10.3390/smartcities3040055
Porru, S., Misso, F. E., Pani, F. E., & Repetto, C. (2020).
Smart mobility and public transport: Opportunities and
challenges in rural and urban areas. Journal of Traffic
and Transportation Engineering (English Edition),
7(1), 88–97. https://doi.org/10.1016/j.jtte.2019.10.002
Sentz, K., & Ferson, S. (2002). Combination of Evidence in
Dempster- Shafer Theory. Contract, April, 96.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.122.7929&rep=rep1&type=pdf
Sharif (RS), R. Al, & Pokharel (SP), P. S. (2021). Smart
City Dimensions and Associated Risks: Review of
literature. Sustainable Cities and Society, June, 103542.
https://doi.org/10.1016/j.scs.2021.103542