
Table 5: Smooth surface models denoising metrics.
Method
Hausdorff
×10
−3
Angle
CD
×10
−4
Bilateral 1.24 3.9 6.94
Guided mesh 1.31 5.27 7.93
Fast and Effective 2.09 6.3 17.6
GeoBi-GNN 1.16 2.7 5.67
Cascaded 1.12 3.17 5.67
The algorithms have been tested on a synthetic
dataset, using five non-learning and learning-based
denoising methods. Tables with the resulting met-
rics are provided. The experiments demonstrate that
meshes with artificial noise generated using our tool
can be effectively denoised. The denoising metrics
achieved in our tests are of the same order, and some-
times almost equal, as those in Kinect Fusion tests.
Currently, the parameters for topological noise
generation are not automatically adjusted. In future
work, these algorithms will automatically select input
parameters based on model size and specific require-
ments. Moreover, we will examine the meshes gen-
erated with topological noise on existing hole-filling
algorithms. We will perform an objective comparison
with the noise from real 3D sensors. For this purpose,
we will use Kinect to collect a dataset.
REFERENCES
Botsch J., Jain H., H. O. (2022). Imd-net: A deep learning-
based icosahedral mesh denoising network. IEEE Ac-
cess, 10:38635–38649.
C.-L., Z. Y. F. H. A. O. K.-C. T. (2011). Bilateral normal
filtering for mesh denoising. IEEE Transactions on
Visualization and Computer Graphics, 17(10):1521–
1530.
Dai A., Qi C.R., N. M. (2017). Shape Completion Using
3D-Encoder-Predictor CNNs and Shape Synthesis. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 5868–
5877, Honolulu, Hawaii, USA. IEEE.
Davis J., Marschner S.R., G. M. L. M. (2002). Fill-
ing holes in complex surfaces using volumetric diffu-
sion. In Proceedings. First International Symposium
on 3D Data Processing Visualization and Transmis-
sion, pages 428–441, Padua, Italy. IEEE.
I., Y. Y. P. N. I. (2013). Linear correlations between
spatial and normal noise in triangle meshes. IEEE
Transactions on Visualization and Computer Graph-
ics, 19(1):45–55.
Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe,
R., Kohli, P., Shotton, J., Hodges, S., Freeman, D.,
Davison, A., et al. (2011). Kinectfusion: real-time 3d
reconstruction and interaction using a moving depth
camera. In Proceedings of the 24th annual ACM sym-
posium on User interface software and technology,
pages 559–568.
Kamberova G., B. R. (1997). Precision of 3D points recon-
structed from stereo. Technical Report . MS-CIS-97-
20, Dept. of Computer & Information Science, Univ.
of Pennsylvania.
Litany O., Bronstein A., B. M. M. A. (2018). Deformable
Shape Completion With Graph Convolutional Au-
toencoders. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 1886–1895, Salt Lake City, Utah, USA. IEEE.
Ma Z., L. S. (2018). A review of 3d reconstruction tech-
niques in civil engineering and their applications. Ad-
vanced Engineering Informatics, 37:163–174.
Mashurov, V. and Semenova, N. (2024). Topological and
node noise filtering on 3d meshes using graph neu-
ral networks (student abstract). In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 23582–23584.
Nguyen C. V., Izadi S., L. D. (2012). Modeling Kinect
Sensor Noise for Improved 3D Reconstruction and
Tracking. In 2012 Second International Conference
on 3D Imaging, Modeling, Processing, Visualization
& Transmission, pages 524–530, Zurich, Switzerland.
IEEE.
Shen Y., Fu H., D. Z. C. X. B. E.-Z. D. Z. K. Z. Y. (2022).
Gcn-denoiser: Mesh denoising with graph convolu-
tional networks. ACM Transactions on Graphics,
41(1):1—-14.
Sun X, Rosin P. L., M. R. L. F. (2007). Fast and ef-
fective feature-preserving mesh denoising. IEEE
Transactions on Visualization and Computer Graph-
ics, 13(5):925–938.
Wang P.-S., Liu Y., T. X. (2016). Mesh denoising via
cascaded normal regression. ACM Transactions on
Graphics, 35(6):1–12.
Yadav S.K., Reitebuch U., S. M. Z. E. P. K. (2018).
Constraint-based point set denoising using normal
voting tensor and restricted quadratic error metrics.
Computers & Graphics, 74:234—-243.
Zhang W., Deng B., Z. J. B. S. L. L. (2015). Guided mesh
normal filtering. Comput. Graph. Forum., 34(7):23–
–34.
Zhang Y., Shen G., W. Q. Q. Y. W. M.-Q. J. (2022).
Geobi-gnn: Geometry-aware bi-domain mesh denois-
ing via graph neural networks. Computer-Aided De-
sign, 144:103154.
Zhao W., Liu X., Z. Y. F. X. Z. D. (2021). Normal-
net: Learning-based mesh normal denoising via local
partition normalization. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 31(12):4697–
4710.
Zhong M., Q. H. (2016). Surface inpainting with spar-
sity constraints. Computer Aided Geometric Design,
41:23–35.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
674