
REFERENCES
Beheshti, M., Berrached, A., de Korvin, A., Hu, C., and
Sirisaengtaksin, O. (1998). On interval weighted
three-layer neural networks. In Proceedings of the
31st Annual Simulation Symposium, pages 188–194.
Bresson, R., Cohen, J., H
¨
ullermeier, E., Labreuche, C., and
Sebag, M. (2020). Neural representation and learning
of hierarchical 2-additive choquet integrals. In Pro-
ceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 1984–1991.
Budincsevity, N. (2017). Weather in szeged 2006-
2016. https://www.kaggle.com/datasets/budincsevity/
szeged-weather. Kaggle Dataset.
Chiang, J. (1999). Choquet fuzzy integral-based hierarchi-
cal networks for decision analysis. IEEE Transactions
on Fuzzy Systems, 7(1):63–71.
Dane, S. (2018). Calcofi. https://www.kaggle.com/datasets/
sohier/calcofi. Kaggle Dataset.
Efron, B. (1979). Bootstrap methods: Another look at the
jackknife. The Annals of Statistics, 7:1–26.
Garczarczy, Z. A. (2000). Interval neural networks. In 2000
IEEE International Symposium on Circuits and Sys-
tems (ISCAS), volume 3, pages 567–570.
Grabisch, M. (2015). Fuzzy measures and integrals: Recent
developments. In Fifty Years of Fuzzy Logic and Its
Applications, pages 125–151.
Grabisch, M. (2016). Set Functions, Games and Capacities
in Decision Making. Springer.
Grabisch, M., Sugeno, M., and Murofushi, T. (2000). Fuzzy
Measures and Integrals: Theory and Applications.
Physica, Heidelberg.
Hisao, I. and Manabu, N. (2000). Neural networks
for soft decision making. Fuzzy Sets and Systems,
115(1):121–140.
Hmidy, Y., Rico, A., and Strauss, O. (2022a). Extend-
ing the macsum aggregation to interval-valued inputs.
In 15th International Conference on Scalable Uncer-
tainty Management, volume 13562, pages 338–347.
Hmidy, Y., Rico, A., and Strauss, O. (2022b). Macsum ag-
gregation learning. Fuzzy Sets and Systems, 24.
Khosravi, A., Nahavandi, S., Srinivasan, D., and Khosravi,
R. (2014). Constructing optimal prediction intervals
by using neural networks and bootstrap method. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 26:1810–1815.
Kowalski, P. A. and Kulczycki, P. (2017). Interval proba-
bilistic neural network. Neural Computing and Appli-
cations, 28.
Lewis-Beck, C. (2015). Applied Regression: An Introduc-
tion, volume 22. Sage Publications.
Machado, M., Flavio, L., Jusan, D., and Caldeira, A.
(2015). Using a bipolar choquet neural network to
locate a retail store. In 3rd International Conference
on Information Technology and Quantitative Manage-
ment, volume 55, pages 741–747.
Mancini, T., Calvo-Pardo, H., and Olmo, J. (2021). Predic-
tion intervals for deep neural networks. arXiv preprint
arXiv:2010.04044v2.
Monleon, P. (2020). Montreal bike lanes.
https://www.kaggle.com/datasets/pablomonleon/
montreal-bike-lanes. Kaggle Dataset.
Oala, L., Heiß, C., Macdonald, J., M
¨
arz, M., Samek, W.,
and Kutyniok, G. (2020). Interval neural networks:
Uncertainty scores. arXiv preprint arXiv:2003.11566.
of New York, C. (2021). New york city - east river
bicycle crossings. https://www.kaggle.com/datasets/
new-york-city/nyc-east-river-bicycle-crossings. Kag-
gle Dataset.
Rossi, F. and Conan-Guez, B. (2002). Multi-layer percep-
tron on interval data. In Classification, Clustering,
and Data Analysis, pages 427–434.
Shi-Hong, Y. and Zheng-You, W. (2005). Toward accurate
choquet integral-based neural network. In Interna-
tional Conference on Machine Learning and Cyber-
netics, volume 8, pages 4621–4624.
Smith, S. (2019). Weather conditions in world
war two. https://www.kaggle.com/datasets/smid80/
weatherww2. Kaggle Dataset.
Strauss, O., Rico, A., and Hmidy, Y. (2022). Macsum:
A new interval-valued linear operator. International
Journal of Approximate Reasoning, 145:121–138.
Tsiaras, T. (2020). Uk road safety: Traffic acci-
dents and vehicles. https://www.kaggle.com/datasets/
tsiaras/uk-road-safety-accidents-and-vehicles. Kag-
gle Dataset.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
352