
Bol
´
on-Canedo, V., S
´
anchez-Maro
˜
no, N., and Alonso-
Betanzos, A. (2013). A review of feature selection
methods on synthetic data. Knowledge and Informa-
tion Systems.
Bouagina, S., Naouara, M., Hafsi, S., and Djaziri-Larbi, S.
(2023). MFCC-Based Analysis of Vibratory Anoma-
lies in Parkinson’s Disease Detection using Sustained
Vowels. In AMCAI.
Das, R. (2010). A comparison of multiple classification
methods for diagnosis of Parkinson disease. Expert
Systems with Applications.
Dave, N. (2013). Feature Extraction Methods LPC, PLP
and MFCC In Speech Recognition.
Galaz, Z., Mekyska, J., Mzourek, Z., Smekal, Z., Rek-
torova, I., Eliasova, I., Kostalova, M., Mrackova, M.,
and Berankova, D. (2016). Prosodic analysis of neu-
tral, stress-modified and rhymed speech in patients
with Parkinson’s disease. Computer methods and pro-
grams in biomedicine.
Gore, S. M., Salunke, M. M., Patil, S. A., and Kemalkar, A.
(2020). Disease detection using voice analysis. IR-
JET.
Guyon, I. and Elisseeff, A. (2003). An introduction to vari-
able and feature selection. JMLR.
Harel, B., Cannizzaro, M., and Snyder, P. J. (2004). Vari-
ability in fundamental frequency during speech in pro-
dromal and incipient Parkinson’s disease: a longitudi-
nal case study. Brain and Cognition.
Hariharan, M., Polat, K., and Sindhu, R. (2014). A new
hybrid intelligent system for accurate detection of
Parkinson’s disease. Computer Methods and Pro-
grams in Biomedicine.
Hlavnicka, J., Cmejla, R., Klempir, J., Ruzivka, E., and
Rusz, J. (2019). Acoustic tracking of pitch, modal,
and subharmonic vibrations of vocal folds in Parkin-
son’s disease and Parkinsonism. IEEE Access.
Ho, A. K., Iansek, R., Marigliani, C., Bradshaw, J. L., and
Gates, S. (1998). Speech impairment in a large sam-
ple of patients with Parkinson’s disease. Behavioural
Neurology.
Islam, R., Abdel-Raheem, E., and Tarique, M. (2023).
Parkinson’s Disease Detection Using Voice Features
and Machine Learning Algorithms.
Jadoul, Y., Thompson, B., and de Boer, B. (2018). Introduc-
ing Parselmouth: A Python interface to Praat. Journal
of Phonetics.
Jafari, A. (2013). Classification of parkinson’s disease
patients using nonlinear phonetic features and mel-
frequency cepstral analysis. BME.
Jeancolas, L., Petrovska-Delacr
´
etaz, D., Leh
´
ericy, S., Be-
nali, H., and Benkelfat, B. (2016). Voice analysis as
a tool for early diagnosis of parkinson’s disease: state
of the art. In CORESA.
Little, M., Mcsharry, P., Roberts, S., Costello, D., and Mo-
roz, I. (2007). Exploiting nonlinear recurrence and
fractal scaling properties for voice disorder detection.
Biomedical engineering online.
Little, M. A., McSharry, P. E., Hunter, E. J., Spielman, J.,
and Ramig, L. O. (2009). Suitability of dysphonia
measurements for telemonitoring of Parkinson’s dis-
ease. IEEE TBME.
McFee, B., Raffel, C., Liang, D., Ellis, D., McVicar, M.,
Battenberg, E., and Nieto, O. (2015). librosa: Audio
and Music Signal Analysis in Python.
Mei, J., Desrosiers, C., and Frasnelli, J. (2021). Machine
learning for the diagnosis of Parkinson’s disease: a
review of literature. Frontiers in aging neuroscience.
Naranjo, L., Perez, C. J., Campos-Roca, Y., and Martin, J.
(2016). Addressing voice recording replications for
Parkinson’s disease detection. Expert Systems with
Applications.
Orozco-Arroyave, J. R., Arias-Londo
˜
no, J. D., Vargas-
Bonilla, J. F., Gonz
´
alez-R
´
ativa, M. C., and N
¨
oth, E.
(2014). New Spanish speech corpus database for the
analysis of people suffering from Parkinson’s disease.
In LREC.
Orozco-Arroyave, J. R., Arias-Londo
˜
no, J. D., Vargas-
Bonilla, J. F., and N
¨
oth, E. (2013). Analysis of Speech
from People with Parkinson’s Disease through Non-
linear Dynamics. In Advances in Nonlinear Speech
Processing.
Pah, N. D., Motin, M. A., and Kumar, D. K. (2022).
Phonemes based detection of Parkinson’s disease for
telehealth applications. Scientific Reports.
Rosario, S. F. and Thangadurai, K. (2015). RELIEF: Fea-
ture Selection Approach. IJIRD.
Sakar, B. E., Isenkul, M. E., Sakar, C. O., Sertbas, A., Gur-
gen, F., Delil, S., Apaydin, H., and Kursun, O. (2013).
Collection and analysis of a Parkinson speech dataset
with multiple types of sound recordings. IEEE JBHI.
Sakar, C. O. and Kursun, O. (2010). Telediagnosis of
Parkinson’s disease using measurements of dyspho-
nia. Journal of Medical Systems.
Tsanas, A., Little, M., McSharry, P., Spielman, J., and
Ramig, L. (2012). Novel speech signal processing
algorithms for high-accuracy classification of Parkin-
son’s disease. IEEE TBME.
Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S.,
and Moore, J. H. (2018). Relief-based feature selec-
tion: Introduction and review. JBI.
Villa-Ca
˜
nas, T., Orozco-Arroyave, J. R., Vargas-Bonilla,
J. F., and Arias-Londo
˜
no, J. D. (2014). Modulation
spectra for automatic detection of Parkinson’s disease.
In STSIVA.
Automatic Classification of Parkinson’s Disease Through the Fusion of Sustained Vowel Descriptors
885