
ference on Computer Vision and Pattern Recognition,
pages 18278–18289.
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., and
Timofte, R. (2021). SwinIR: Image restoration using
swin transformer. In ICCV Workshops.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z.,
Lin, S., and Guo, B. (2021). Swin transformer: Hi-
erarchical vision transformer using shifted windows.
arXiv:2103.14030.
Loshchilov, I. and Hutter, F. (2017). SGDR: Stochastic gra-
dient descent with warm restarts. In ICLR.
Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A
database of human segmented natural images and its
application to evaluating segmentation algorithms and
measuring ecological statistics. In ICCV.
Michaeli, T. and Irani, M. (2013). Nonparametric blind
super-resolution. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 945–
952.
Orhei, C., Bogdan, V., Bonchis, C., and Vasiu, R. (2021).
Dilated filters for edge-detection algorithms. Applied
Sciences, 11(22):10716.
Orhei, C. and Vasiu, R. (2023). An analysis of extended and
dilated filters in sharpening algorithms. IEEE Access,
11:81449–81465.
Peng, Y., Zhang, L., Liu, S., Wu, X., Zhang, Y., and Wang,
X. (2019). Dilated residual networks with symmetric
skip connection for image denoising. Neurocomput-
ing.
Ramachandran, P., Zoph, B., and Le, Q. V. (2017).
Swish: a self-gated activation function. arXiv preprint
arXiv:1710.05941.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net:
convolutional networks for biomedical image segmen-
tation. In MICCAI.
Shi, W., Caballero, J., Husz
´
ar, F., Totz, J., Aitken, A. P.,
Bishop, R., Rueckert, D., and Wang, Z. (2016). Real-
time single image and video super-resolution using an
efficient sub-pixel convolutional neural network. In
CVPR.
Tian, C., Xu, Y., and Zuo, W. (2020). Image denoising
using deep cnn with batch renormalization. Neural
Networks.
Tian, C., Zheng, M., Lin, C.-W., Li, Z., and Zhang, D.
(2024). Heterogeneous window transformer for im-
age denoising. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 54(11):6621–6632.
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and J
´
egou, H. (2021). Training data-efficient im-
age transformers & distillation through attention. In
ICML.
Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik,
A., and Li, Y. (2022). Maxim: Multi-axis mlp for
image processing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 5769–5780.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. In NeurIPS.
Wan, Y., Shao, M., Cheng, Y., Meng, D., and Zuo, W.
(2023). Progressive convolutional transformer for im-
age restoration. Engineering Applications of Artificial
Intelligence, 125:106755.
Wang, W., Wu, X., Yuan, X., and Gao, Z. (2020). An
experiment-based review of low-light image enhance-
ment methods. Ieee Access, 8:87884–87917.
Wang, Z., Cun, X., Bao, J., and Liu, J. (2021). Uformer:
A general u-shaped transformer for image restoration.
arXiv:2106.03106.
Wu, W., Lv, G., Duan, Y., Liang, P., Zhang, Y., and Xia,
Y. (2024). Dual convolutional neural network with
attention for image blind denoising.
Yu, F. and Koltun, V. (2016). Multi-scale context aggrega-
tion by dilated convolutions. In International Confer-
ence on Learning Representations.
Yu, F., Koltun, V., and Funkhouser, T. (2017). Dilated
residual networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 472–480.
Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.,
Tay, F. E., Feng, J., and Yan, S. (2021). Tokens-to-
token vit: Training vision transformers from scratch
on imagenet. arXiv:2101.11986.
Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan,
F. S., and Yang, M.-H. (2022). Restormer: Efficient
transformer for high-resolution image restoration. In
CVPR.
Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S.,
Yang, M.-H., and Shao, L. (2020a). Cycleisp: Real
image restoration via improved data synthesis. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 2696–2705.
Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S.,
Yang, M.-H., and Shao, L. (2020b). Learning enriched
features for real image restoration and enhancement.
In ECCV.
Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S.,
Yang, M.-H., and Shao, L. (2021). Multi-stage pro-
gressive image restoration. In CVPR.
Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., and
Timofte, R. (2021). Plug-and-play image restoration
with deep denoiser prior. TPAMI.
Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W.,
and Li, H. (2020). Deblurring by realistic blurring. In
CVPR.
Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L.
(2017). Beyond a gaussian denoiser: Residual learn-
ing of deep cnn for image denoising. TIP.
Zhang, K., Zuo, W., and Zhang, L. (2018). FFDNet: To-
ward a fast and flexible solution for CNN-based image
denoising. TIP.
Zhang, L., Wu, X., Buades, A., and Li, X. (2011). Color de-
mosaicking by local directional interpolation and non-
local adaptive thresholding. JEI.
Zhang, Z., Jiang, Y., Shao, W., Wang, X., Luo, P., Lin, K.,
and Gu, J. (2023). Real-time controllable denoising
for image and video. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 14028–14038.
AKDT: Adaptive Kernel Dilation Transformer for Effective Image Denoising
425