
REFERENCES
Abdullah, N. A., Feizollah, A., Sulaiman, A., and Anuar,
N. B. (2019). Challenges and recommended solutions
in multi-source and multi-domain sentiment analysis.
IEEE Access, 7:144957–144971.
Baumeister, R. F., Bratslavsky, E., Finkenauer, C., and
Vohs, K. D. (2001). Bad is stronger than good. Review
of general psychology, 5(4):323–370.
Blitzer, J., Dredze, M., and Pereira, F. (2007). Biographies,
bollywood, boom-boxes and blenders: Domain adap-
tation for sentiment classification. In ACL, pages 187–
205.
Cambria, E., Poria, S., Hazarika, D., and Kwok, K. (2018).
Senticnet 5: Discovering conceptual primitives for
sentiment analysis by means of context embeddings.
In AAAI, pages 1795–1802. AAAI Press.
Cambria, E., Speer, R., Havasi, C., and Hussain, A. (2010).
Senticnet: A publicly available semantic resource for
opinion mining. In AAAI Fall Symposium: Common-
sense Knowledge, volume FS-10-02 of AAAI Techni-
cal Report, pages 14–18. AAAI Press.
Casas, B., Hern
´
andez-Fern
´
andez, A., Catal
`
a, N., Ferrer-
i Cancho, R., and Baixeries, J. (2019). Polysemy
and brevity versus frequency in language. Computer
Speech & Language, 58:19–50.
Dragoni, M. (2015). Shellfbk: an information retrieval-
based system for multi-domain sentiment analysis. In
Proceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 502–509.
Dragoni, M., Tettamanzi, A. G. B., and da Costa Pereira,
C. (2014). A fuzzy system for concept-level senti-
ment analysis. In SemWebEval@ESWC, volume 475
of Communications in Computer and Information Sci-
ence, pages 21–27. Springer.
Dragoni, M., Tettamanzi, A. G. B., and da Costa Pereira,
C. (2015). Propagating and aggregating fuzzy polar-
ities for concept-level sentiment analysis. Cognitive
Computation, 7(2):186–197.
Dragoni, M., Tettamanzi, A. G. B., and da Costa Pereira,
C. (2016). DRANZIERA: an evaluation protocol
for multi-domain opinion mining. In Proceedings of
the 10th International Conference on Language Re-
sources and Evaluation (LREC 2016), Paris, France,
pages 267–272, Paris, France. European Language
Resources Association (ELRA).
Hu, M. and Liu, B. (2004). Mining and summarizing
customer reviews. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 168–177.
Hutto, C. J. and Gilbert, E. (2014). Vader: A parsimonious
rule-based model for sentiment analysis of social me-
dia text. In Eighth international AAAI conference on
weblogs and social media.
Kirkpatrick, S., Jr., D. G., and Vecchi, M. P. (1983).
Optimization by simulated annealing. SCIENCE,
220(4598):671–680.
Lexalytics (2015). Sentiment extraction - measuring the
emotional tone of content. Technical Report.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.
Nielsen, F.
˚
A. (2011). A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.
Pasquier, C., da Costa Pereira, C., and Tettamanzi, A.
G. B. (2020). Extending a fuzzy polarity propaga-
tion method for multi-domain sentiment analysis with
word embedding and POS tagging. In ECAI, volume
325 of Frontiers in Artificial Intelligence and Applica-
tions, pages 2140–2147. IOS Press.
Pirnau, M. (2018). Sentiment analysis for the tweets that
contain the word “earthquake”. In 2018 10th Inter-
national Conference on Electronics, Computers and
Artificial Intelligence (ECAI), pages 1–6.
Rexha, A., Kr
¨
oll, M., Dragoni, M., and Kern, R. (2018).
The CLAUSY system at ESWC-2018 challenge on se-
mantic sentiment analysis. In SemWebEval@ESWC,
volume 927 of Communications in Computer and In-
formation Science, pages 186–196. Springer.
Ribeiro, F. N., Ara
´
ujo, M., Gonc¸alves, P., Gonc¸alves, M. A.,
and Benevenuto, F. (2016). Sentibench-a benchmark
comparison of state-of-the-practice sentiment analysis
methods. EPJ Data Science, 5(1):23.
Schouten, K. and Frasincar, F. (2015). The benefit of
concept-based features for sentiment analysis. In
SemWebEval@ESWC, volume 548 of Communica-
tions in Computer and Information Science, pages
223–233. Springer.
Smedt, T. D. and Daelemans, W. (2012). Pattern for
python. Journal of Machine Learning Research,
13(Jun):2063–2067.
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A., and Potts, C. (2013). Recursive deep
models for semantic compositionality over a senti-
ment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing,
pages 1631–1642.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K. D., and
Stede, M. (2011). Lexicon-based methods for senti-
ment analysis. Computational Linguistics, 37(2):267–
307.
Tausczik, Y. R. and Pennebaker, J. W. (2010). The psy-
chological meaning of words: Liwc and computerized
text analysis methods. Journal of language and social
psychology, 29(1):24–54.
Yoshida, Y., Hirao, T., Iwata, T., Nagata, M., and Mat-
sumoto, Y. (2011). Transfer learning for multiple-
domain sentiment analysis—identifying domain de-
pendent/independent word polarity. In AAAI, pages
1286–1291.
Propagation-Based Domain-Transferable Gradual Sentiment Analysis
527