
REFERENCES
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. (2020). End-to-end object de-
tection with transformers. European conference on
computer vision, pages 213–229.
Chu, X., Xie, X., Ye, S., Lu, H., Xiao, H., Yuan, Z., Chen,
Z., Zhang, H., and Wu, Y. (2022). Tivee: Visual ex-
ploration and explanation of badminton tactics in im-
mersive visualizations. IEEE Transactions on Visual-
ization and Computer Graphics, 28:118–128.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255.
Ding, N., Takeda, K., Jin, W., Bei, Y., and Fujii, K.
(2024). Estimation of control area in badminton dou-
bles with pose information from top and back view
drone videos. Multimedia Tools and Applications,
83:24777–24793.
Everingham, M., Van Gool, L., Williams, C. K., Winn, J.,
and Zisserman, A. (2010). The pascal visual object
classes (voc) challenge. International journal of com-
puter vision, 88(2):303–338.
Faulkner, H. et al. (2020). Tenniset: A dataset for dense
fine-grained event recognition, localisation and de-
scription. arXiv preprint arXiv:2006.14236.
Haq, M. A., Tarashima, S., and Tagawa, N. (2024). Shuttle-
cock detection using residual learning in u-net archi-
tecture. JOIV : International Journal on Informatics
Visualization.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Jocher, G. et al. (2020). Yolov5: An improved version of
yolov4. arXiv preprint arXiv:2006.14236.
Jocher, G. et al. (2023). Yolov8: A state-of-the-art object
detection model. arXiv preprint arXiv:2301.00503.
Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin,
I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M.,
Kolesnikov, A., Duerig, T., and Ferrari, V. (2020).
The open images dataset v4: Unified image classifi-
cation, object detection, and visual relationship detec-
tion at scale. International Journal of Computer Vi-
sion, 128:1956–1981.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Doll
´
ar, P., and Zitnick, C. L. (2014). Mi-
crosoft coco: Common objects in context. European
conference on computer vision, pages 740–755.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. European conference on computer
vision, pages 21–37.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time ob-
ject detection. Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Redmon, J. S. D. R. G. A. F. (2016). (yolo) you only look
once. Cvpr, 2016-December:779–788.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information
processing systems, 28.
Sekachev, B., Manovich, N., Zhiltsov, M., Zhavoronkov,
A., Kalinin, D., Hoff, B., TOsmanov, Kruchinin,
D., Zankevich, A., DmitriySidnev, Markelov, M., Jo-
hannes222, Chenuet, M., a andre, telenachos, Mel-
nikov, A., Kim, J., Ilouz, L., Glazov, N., Priya4607,
Tehrani, R., Jeong, S., Skubriev, V., Yonekura, S., vu-
gia truong, zliang7, lizhming, and Truong, T. (2020).
opencv/cvat: v1.1.0.
Sun, N. E., Lin, Y. C., Chuang, S. P., Hsu, T. H., Yu, D. R.,
Chung, H. Y., and Ik, T. U. (2020). Tracknetv2: Ef-
ficient shuttlecock tracking network. Proceedings -
2020 International Conference on Pervasive Artificial
Intelligence, ICPAI 2020, pages 86–91.
Tarashima, S., Haq, M. A., Wang, Y., and Tagawa, N.
(2023). Widely applicable strong baseline for sports
ball detection and tracking. In 2023 British Machine
Vision Conference.
Team, F. (2023). Footballdb: A comprehensive database for
soccer analytics. Journal of Sports Analytics.
Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80
million tiny images: A large data set for nonpara-
metric object and scene recognition. IEEE transac-
tions on pattern analysis and machine intelligence,
30(11):1958–1970.
RacketDB: A Comprehensive Dataset for Badminton Racket Detection
433