
S., Perrone, T., Messineo, D., et al. (2024). A
new 3d-printed temporal bone:‘the sapiens’—specific
anatomical printed-3d-model in education and new
surgical simulations. European Archives of Oto-
Rhino-Laryngology, pages 1–10.
Jackler, D. and Gralapp, C. (2024). Oto surgery atlas –
department of ohns. https://otosurgeryatlas.stanford.
edu/. Last accessed October 2024, Images belong to
the illustrators and the Stanford Otolaryngology —
Head & Neck Surgery Department, permission ob-
tained from illustrator (Christine Gralapp).
Jansen, Y., Dragicevic, P., Isenberg, P., Alexander, J.,
Karnik, A., Kildal, J., Subramanian, S., and Hornbæk,
K. (2015). Opportunities and challenges for data phys-
icalization. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems,
pages 3227–3236.
Jeising, S., Liu, S., Blaszczyk, T., Rapp, M., Beez, T., Cor-
nelius, J. F., Schwerter, M., and Sabel, M. (2024).
Combined use of 3d printing and mixed reality tech-
nology for neurosurgical training: getting ready for
brain surgery. Neurosurgical Focus, 56(1):E12.
Karolus, J., Brass, E., Kosch, T., Schmidt, A., and Woz-
niak, P. (2021). Mirror, mirror on the wall: Exploring
ubiquitous artifacts for health tracking. In Proceed-
ings of the 20th International Conference on Mobile
and Ubiquitous Multimedia, pages 148–157.
Kwok, S. W., Goh, K. H. H., Tan, Z. D., Tan, S. T. M., Tjiu,
W. W., Soh, J. Y., Ng, Z. J. G., Chan, Y. Z., Hui, H. K.,
and Goh, K. E. J. (2017). Electrically conductive fila-
ment for 3d-printed circuits and sensors. Applied Ma-
terials Today, 9:167–175.
Lane, J. I. and Witte, R. J. (2009). The temporal bone. An
imaging atlas. Heidelberg: Springer.
Longfield, E. A., Brickman, T. M., and Jeyakumar, A.
(2015). 3d printed pediatric temporal bone: a novel
training model. Otology & Neurotology, 36(5):793–
795.
LOZANO-HEMMER (2011). Tape recorders:
Time-measuring tapes. http://dataphys.org/list/
tape-recorders-measure-time-instead-of-distance/.
McJunkin, J. L., Jiramongkolchai, P., Chung, W., South-
worth, M., Durakovic, N., Buchman, C. A., and Silva,
J. R. (2018). Development of a mixed reality platform
for lateral skull base anatomy. Otology & neurotology:
official publication of the American Otological Soci-
ety, American Neurotology Society [and] European
Academy of Otology and Neurotology, 39(10):e1137.
Mossman, C., Samavati, F. F., Etemad, K., and Dawson,
P. (2023). Mobile augmented reality for adding de-
tailed multimedia content to historical physicaliza-
tions. IEEE Computer Graphics and Applications,
43(3):71–83.
Pahr, D., Ehlers, H., Wu, H.-Y., Waldner, M., and Raidou,
R. G. (2024). Investigating the effect of operation
mode and manifestation on physicalizations of dy-
namic processes. arXiv preprint arXiv:2405.09372.
Park, J. H., Lee, Y.-B., Kim, S. Y., Kim, H. J., Jung, Y.-
S., and Jung, H.-D. (2019). Accuracy of modified
cad/cam generated wafer for orthognathic surgery.
PloS one, 14(5):e0216945.
Reich, S., Berndt, S., K
¨
uhne, C., and Herstell, H. (2022).
Accuracy of 3d-printed occlusal devices of different
volumes using a digital light processing printer. Ap-
plied Sciences, 12(3):1576.
Roo, J. S., Gervais, R., Lain
´
e, T., Cinquin, P.-A., Hachet,
M., and Frey, J. (2020). Physio-stacks: Supporting
communication with ourselves and others via tangi-
ble, modular physiological devices. In 22nd Inter-
national Conference on Human-Computer Interaction
with Mobile Devices and Services, pages 1–12.
Rose, A. S., Webster, C. E., Harrysson, O. L., Formeis-
ter, E. J., Rawal, R. B., and Iseli, C. E. (2015). Pre-
operative simulation of pediatric mastoid surgery with
3d-printed temporal bone models. International jour-
nal of pediatric otorhinolaryngology, 79(5):740–744.
Sauv
´
e, K., Bakker, S., and Houben, S. (2020). Econun-
drum: Visualizing the climate impact of dietary choice
through a shared data sculpture. In Proceedings of the
2020 ACM Designing Interactive Systems Conference,
pages 1287–1300.
Schroeder, W. J., Lorensen, B., and Martin, K. (2004). The
visualization toolkit: an object-oriented approach to
3D graphics. Kitware.
ScienceDirect (2024). Hounsfield scale - an
overview. https://www.sciencedirect.com/topics/
medicine-and-dentistry/hounsfield-scale. Accessed:
October 21, 2024.
Sun, Z., Wong, Y. H., and Yeong, C. H. (2023). Patient-
specific 3d-printed low-cost models in medical educa-
tion and clinical practice. Micromachines, 14(2):464.
Suzuki, R., Taniguchi, N., Uchida, F., Ishizawa, A.,
Kanatsu, Y., Zhou, M., Funakoshi, K., Akashi, H.,
and Abe, H. (2018). Transparent model of temporal
bone and vestibulocochlear organ made by 3d print-
ing. Anatomical science international, 93(1):154–
159.
Takahashi, K., Morita, Y., Ohshima, S., Izumi, S., Kubota,
Y., Yamamoto, Y., Takahashi, S., and Horii, A. (2017).
Creating an optimal 3d printed model for temporal
bone dissection training. Annals of Otology, Rhinol-
ogy & Laryngology, 126(7):530–536.
Tan, L., Wang, Z., Jiang, H., Han, B., Tang, J., Kang, C.,
Zhang, N., and Xu, Y. (2022). Full color 3d printing
of anatomical models. Clinical Anatomy, 35(5):598–
608.
Wan, D., Wiet, G. J., Welling, D. B., Kerwin, T., and Stred-
ney, D. (2010). Creating a cross-institutional grad-
ing scale for temporal bone dissection. The Laryngo-
scope, 120(7):1422–1427.
Wanibuchi, M., Noshiro, S., Sugino, T., Akiyama, Y.,
Mikami, T., Iihoshi, S., Miyata, K., Komatsu, K., and
Mikuni, N. (2016). Training for skull base surgery
with a colored temporal bone model created by three-
dimensional printing technology. World neurosurgery,
91:66–72.
Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G.,
Ho, S., Gee, J. C., and Gerig, G. (2006). User-guided
3d active contour segmentation of anatomical struc-
tures: significantly improved efficiency and reliability.
Neuroimage, 31(3):1116–1128.
IVAPP 2025 - 16th International Conference on Information Visualization Theory and Applications
912