
REFERENCES
Afchar, D., Nozick, V., Yamagishi, J., and Echizen, I.
(2018). Mesonet: a compact facial video forgery de-
tection network. In 2018 IEEE international work-
shop on information forensics and security (WIFS),
pages 1–7. IEEE.
Chen, L., Zhang, Y., Song, Y., Liu, L., and Wang, J. (2022).
Self-supervised learning of adversarial example: To-
wards good generalizations for deepfake detection.
Chollet, F. (2017). Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 1251–1258.
Das, S., Seferbekov, S., Datta, A., Islam, M. S., and Amin,
M. R. (2021). Towards solving the deepfake prob-
lem: An analysis on improving deepfake detection us-
ing dynamic face augmentation.
Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R.,
Wang, M., and Ferrer, C. C. (2020). The deepfake
detection challenge (dfdc) dataset. arXiv preprint
arXiv:2006.07397.
Ezeakunne, U. and Liu, X. (2023). Facial deepfake detec-
tion using gaussian processes.
Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
(2020). Sharpness-aware minimization for effi-
ciently improving generalization. arXiv preprint
arXiv:2010.01412.
Guan, J., Zhou, H., Gong, M., Ding, E., Wang, J., and Zhao,
Y. (2022). Detecting deepfake by creating spatio-
temporal regularity disruption.
Guo, H., Hu, S., Wang, X., Chang, M.-C., and Lyu, S.
(2022). Robust attentive deep neural network for de-
tecting gan-generated faces.
Hazirbas, C., Bitton, J., Dolhansky, B., Pan, J., Gordo, A.,
and Ferrer, C. C. (2021). Towards measuring fairness
in ai: the casual conversations dataset.
Ju, Y., Hu, S., Jia, S., Chen, G. H., and Lyu, S. (2024).
Improving fairness in deepfake detection.
Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F., and
Guo, B. (2020a). Face x-ray for more general face
forgery detection.
Li, Y. (2018). Exposing deepfake videos by detecting face
warping artif acts.
Li, Y., Yang, X., Sun, P., Qi, H., and Lyu, S. (2020b).
Celeb-df: A large-scale challenging dataset for deep-
fake forensics. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 3207–3216.
Lin, L., He, X., Ju, Y., Wang, X., Ding, F., and Hu, S.
(2024). Preserving fairness generalization in deepfake
detection.
Masood, M., Nawaz, M., Malik, K. M., Javed, A., Irtaza,
A., and Malik, H. (2023). Deepfakes generation and
detection: State-of-the-art, open challenges, counter-
measures, and way forward.
Nadimpalli, A. V. and Rattani, A. (2022). Gbdf: gender
balanced deepfake dataset towards fair deepfake de-
tection.
Pu, M., Kuan, M. Y., Lim, N. T., Chong, C. Y., and Lim,
M. K. (2022a). Fairness evaluation in deepfake detec-
tion models using metamorphic testing.
Pu, W., Hu, J., Wang, X., Li, Y., Hu, S., Zhu, B., Song,
R., Song, Q., Wu, X., and Lyu, S. (2022b). Learning a
deep dual-level network for robust deepfake detection.
Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies,
J., and Nießner, M. (2019). Faceforensics++: Learn-
ing to detect manipulated facial images. In Proceed-
ings of the IEEE/CVF international conference on
computer vision, pages 1–11.
Shiohara, K. and Yamasaki, T. (2022). Detecting deepfakes
with self-blended images.
Tan, M. (2019). Efficientnet: Rethinking model scaling
for convolutional neural networks. arXiv preprint
arXiv:1905.11946.
Trinh, L. and Liu, Y. (2021). An examination of fairness of
ai models for deepfake detection.
Wang, J., Wu, Z., Ouyang, W., Han, X., Chen, J., Jiang,
Y.-G., and Li, S.-N. (2022). M2tr: Multi-modal multi-
scale transformers for deepfake detection.
Xu, Y., Raja, K., Verdoliva, L., and Pedersen, M. (2023).
Learning pairwise interaction for generalizable deep-
fake detection.
Xu, Y., Terh
¨
orst, P., Raja, K., and Pedersen, M. (2022). A
comprehensive analysis of ai biases in deepfake detec-
tion with massively annotated databases.
Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., and Yu,
N. (2021a). Multi-attentional deepfake detection.
Zhao, T., Xu, X., Xu, M., Ding, H., Xiong, Y., and Xia,
W. (2021b). Learning self-consistency for deepfake
detection.
Data-Driven Fairness Generalization for Deepfake Detection
591