
Fu, K., Cheng, D., Tu, Y., and Zhang, L. (2016). Credit
card fraud detection using convolutional neural net-
works. In Neural Information Processing: 23rd In-
ternational Conference, ICONIP 2016, Kyoto, Japan,
October 16–21, 2016, Proceedings, Part III 23, pages
483–490. Springer.
Hasugian, L. S. et al. (2023). Fraud detection for online
interbank transaction using deep learning. Journal of
Syntax Literate, 8(6).
Karthika, J. and Senthilselvi, A. (2023). Smart credit card
fraud detection system based on dilated convolutional
neural network with sampling technique. Multimedia
Tools and Applications, 82(20):31691–31708.
Liu, Y., Ao, X., Qin, Z., Chi, J., Feng, J., Yang, H., and He,
Q. (2021). Pick and choose: a gnn-based imbalanced
learning approach for fraud detection. In Proceedings
of the web conference 2021, pages 3168–3177.
Liu, Z., Dou, Y., Yu, P. S., Deng, Y., and Peng, H. (2020).
Alleviating the inconsistency problem of applying
graph neural network to fraud detection. In Proceed-
ings of the 43rd international ACM SIGIR conference
on research and development in information retrieval,
pages 1569–1572.
Lu, M., Han, Z., Rao, S. X., Zhang, Z., Zhao, Y., Shan,
Y., Raghunathan, R., Zhang, C., and Jiang, J. (2022).
Bright-graph neural networks in real-time fraud detec-
tion. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Manage-
ment, pages 3342–3351.
Maes, S., Tuyls, K., Vanschoenwinkel, B., and Manderick,
B. (2002). Credit card fraud detection using bayesian
and neural networks. In Proceedings of the 1st inter-
national naiso congress on neuro fuzzy technologies,
volume 261, page 270.
Maniraj, S., Saini, A., Ahmed, S., and Sarkar, S. (2019).
Credit card fraud detection using machine learning
and data science. International Journal of Engineer-
ing Research, 8(9):110–115.
Peng, H., Zhang, R., Dou, Y., Yang, R., Zhang, J., and
Yu, P. S. (2021). Reinforced neighborhood selec-
tion guided multi-relational graph neural networks.
ACM Transactions on Information Systems (TOIS),
40(4):1–46.
Rao, S. X., Zhang, S., Han, Z., Zhang, Z., Min, W., Chen,
Z., Shan, Y., Zhao, Y., and Zhang, C. (2020). xfraud:
explainable fraud transaction detection. arXiv preprint
arXiv:2011.12193.
Sahin, Y. and Duman, E. (2011). Detecting credit card fraud
by decision trees and support vector machines. In Pro-
ceedings of the International MultiConference of En-
gineers and Computer Scientists, volume 1, pages 1–
6.
Sailusha, R., Gnaneswar, V., Ramesh, R., and Rao, G. R.
(2020). Credit card fraud detection using machine
learning. In 2020 4th international conference on
intelligent computing and control systems (ICICCS),
pages 1264–1270. IEEE.
Saputra, A. et al. (2019). Fraud detection using machine
learning in e-commerce. International Journal of Ad-
vanced Computer Science and Applications, 10(9).
Tumiwa, R. A. F., Purba, J. H. V., Zaroni, A. N., and Judi-
janto, L. (2024). Management of antifraud in the
era of banking digitization. International Journal,
5(10):2355–2367.
Varun Kumar, K., Vijaya Kumar, V., Vijay Shankar, A., and
Pratibha, K. (2020). Credit card fraud detection us-
ing machine learning algorithms. International jour-
nal of engineering research & technology (IJERT),
9(7):2020.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems, 30.
Veli
ˇ
ckovi
´
c, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. (2017). Graph attention networks.
arXiv preprint arXiv:1710.10903.
Wang, D., Lin, J., Cui, P., Jia, Q., Wang, Z., Fang, Y., Yu,
Q., Zhou, J., Yang, S., and Qi, Y. (2019). A semi-
supervised graph attentive network for financial fraud
detection. In 2019 IEEE international conference on
data mining (ICDM), pages 598–607. IEEE.
Xiang, S., Cheng, D., Shang, C., Zhang, Y., and Liang,
Y. (2022). Temporal and heterogeneous graph neural
network for financial time series prediction. In Pro-
ceedings of the 31st ACM international conference on
information & knowledge management, pages 3584–
3593.
Xiang, S., Zhu, M., Cheng, D., Li, E., Zhao, R., Ouyang,
Y., Chen, L., and Zheng, Y. (2023a). Semi-supervised
credit card fraud detection via attribute-driven graph
representation. In AAAI Conference on Artificial In-
telligence.
Xiang, S., Zhu, M., Cheng, D., Li, E., Zhao, R., Ouyang,
Y., Chen, L., and Zheng, Y. (2023b). Semi-supervised
credit card fraud detection via attribute-driven graph
representation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
14557–14565.
Xie, Y., Liu, G., Zhou, M., Wei, L., Zhu, H., and Zhou, R.
(2023). A spatial-temporal gated network for credit
card fraud detection. In 2023 IEEE International Con-
ference on Networking, Sensing and Control (ICNSC),
volume 1, pages 1–6. IEEE.
Zhou, X., Zhang, Z., Wang, L., and Wang, P. (2019). A
model based on siamese neural network for online
transaction fraud detection. In 2019 International
Joint Conference on Neural Networks (IJCNN), pages
1–7.
Real-Time Transaction Fraud Detection via Heterogeneous Temporal Graph Neural Network
375