
Han, Z., Ma, Y., Wang, Y., G
¨
unnemann, S., and Tresp, V.
(2020). Graph hawkes neural network for forecasting
on temporal knowledge graphs. In Conference on Au-
tomated Knowledge Base Construction.
Jin, W., Qu, M., Jin, X., and Ren, X. (2019). Recur-
rent event network: Autoregressive structure infer-
ence over temporal knowledge graphs. arXiv preprint
arXiv:1904.05530.
Jin, W., Qu, M., Jin, X., and Ren, X. (2020). Recur-
rent event network: Autoregressive structure inference
over temporal knowledge graphs. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6669–6683.
Johnson, N. L., Kotz, S., and Balakrishnan, N. (1972). Con-
tinuous multivariate distributions, volume 7. Wiley
New York.
Kingma, D. P. (2014). Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980.
Lacroix, T., Obozinski, G., and Usunier, N. (2020). Tensor
decompositions for temporal knowledge base comple-
tion. In International Conference on Learning Repre-
sentations.
Leblay, J. and Chekol, M. W. (2018a). Deriving validity
time in knowledge graph. In Companion Proceedings
of the The Web Conference 2018, pages 1771–1776.
Leblay, J. and Chekol, M. W. (2018b). Deriving validity
time in knowledge graph. In Companion Proceedings
of the The Web Conference, pages 1771–1776.
Lin, X. V., Socher, R., and Xiong, C. (2018). Multi-
hop knowledge graph reasoning with reward shaping.
arXiv preprint arXiv:1808.10568.
Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J.,
Solja
ˇ
ci
´
c, M., Hou, T. Y., and Tegmark, M. (2024).
Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756.
Mahdisoltani, F., Biega, J., and Suchanek, F. M.
(2013). Yago3: A knowledge base from multilingual
wikipedias. In CIDR.
Mahdisoltani, F., Biega, J., and Suchanek, F. M. (2015).
YAGO3: A knowledge base from multilingual
wikipedias. In Seventh Biennial Conference on Inno-
vative Data Systems Research.
Mavromatis, C., Subramanyam, P. L., Ioannidis, V. N.,
Adeshina, A., Howard, P. R., Grinberg, T., Hakim, N.,
and Karypis, G. (2022). Tempoqr: temporal question
reasoning over knowledge graphs. In Proceedings of
the AAAI conference on artificial intelligence, pages
5825–5833.
Ng, K. W., Tian, G.-L., and Tang, M.-L. (2011). Dirichlet
and related distributions: Theory, methods and appli-
cations.
Ruder, S. (2016). An overview of gradient de-
scent optimization algorithms. arXiv preprint
arXiv:1609.04747.
Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg,
R., Titov, I., and Welling, M. (2018). Modeling rela-
tional data with graph convolutional networks. In The
semantic web: 15th international conference, ESWC
2018, Heraklion, Crete, Greece, June 3–7, 2018, pro-
ceedings 15, pages 593–607. Springer.
Sun, H., Zhong, J., Ma, Y., Han, Z., and He, K. (2021).
Timetraveler: Reinforcement learning for temporal
knowledge graph forecasting. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 8306–8319.
Tao, Y., Li, Y., and Wu, Z. (2021). Temporal link predic-
tion via reinforcement learning. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 3470–3474.
IEEE.
Trouillon, T., Welbl, J., Riedel, S., Gaussier,
´
E., and
Bouchard, G. (2016). Complex embeddings for sim-
ple link prediction. In International conference on ma-
chine learning, pages 2071–2080. PMLR.
Tucker, L. R. et al. (1964). The extension of factor anal-
ysis to three-dimensional matrices. Contributions to
mathematical psychology, 110119:110–182.
Wang, J., Wu, R., Wu, Y., Zhang, F., Zhang, S., and Guo,
K. (2024). Mpnet: temporal knowledge graph com-
pletion based on a multi-policy network. Applied In-
telligence, 54(3):2491–2507.
Williams, R. J. (1992). Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine Learning, 8:229–256.
Xiong, W., Hoang, T., and Wang, W. Y. (2017). Deep-
path: A reinforcement learning method for knowledge
graph reasoning. arXiv preprint arXiv:1707.06690.
Zheng, S., Yin, H., Chen, T., Nguyen, Q. V. H., Chen,
W., and Zhao, L. (2023). Dream: Adaptive rein-
forcement learning based on attention mechanism for
temporal knowledge graph reasoning. arXiv preprint
arXiv:2304.03984.
Zhu, C., Chen, M., Fan, C., Cheng, G., and Zhang, Y.
(2021a). Learning from history: Modeling tempo-
ral knowledge graphs with sequential copy-generation
networks. In Proceedings of the AAAI conference on
artificial intelligence, pages 4732–4740.
Zhu, C., Chen, M., Fan, C., Cheng, G., and Zhang, Y.
(2021b). Learning from history: Modeling tempo-
ral knowledge graphs with sequential copy-generation
networks. In Thirty-Fifth AAAI Conference on Artifi-
cial Intelligence, pages 4732–4740.
Improving Temporal Knowledge Graph Forecasting via Multi-Rewards Mechanism and Confidence-Guided Tensor Decomposition
Reinforcement Learning
79