
Kotani, J., Nakao, H., Yamada, I., Miyawaki, A., Mambo,
N., and Ono, Y. (2021). A novel method for mea-
suring the pupil diameter and pupillary light reflex of
healthy volunteers and patients with intracranial le-
sions using a newly developed pupilometer. Frontiers
in Medicine, 8.
Krejtz, K., Duchowski, A. T., Niedzielska, A., Biele, C.,
and Krejtz, I. (2018). Eye tracking cognitive load us-
ing pupil diameter and microsaccades with fixed gaze.
PloS one, 13(9):e0203629.
Kremen, W. S., Panizzon, M. S., Elman, J. A., Granholm,
E. L., Andreassen, O. A., Dale, A. M., Gillespie,
N. A., Gustavson, D. E., Logue, M. W., Lyons, M. J.,
et al. (2019). Pupillary dilation responses as a midlife
indicator of risk for alzheimer’s disease: association
with alzheimer’s disease polygenic risk. Neurobiol-
ogy of Aging, 83:114–121.
Kucewicz, M. T., Dolezal, J., Kremen, V., Berry, B. M.,
Miller, L. R., Magee, A. L., Fabian, V., and Worrell,
G. A. (2018). Pupil size reflects successful encoding
and recall of memory in humans. Scientific reports,
8(1):4949.
Ledig, C., Theis, L., Husz
´
ar, F., Caballero, J., Cunningham,
A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,
Z., et al. (2017). Photo-realistic single image super-
resolution using a generative adversarial network. In
CVPR, pages 4681–4690.
Li, X., Ren, Y., Jin, X., Lan, C., Wang, X., Zeng, W.,
Wang, X., and Chen, Z. (2023). Diffusion models for
image restoration and enhancement–a comprehensive
survey. arXiv preprint arXiv:2308.09388.
Liu, J. (2024). Improving image stitching effect using
super-resolution technique. International Journal of
Advanced Computer Science & Applications, 15(6).
Liu, M., Bian, S., and Lukowicz, P. (2022). Non-contact,
real-time eye blink detection with capacitive sensing.
In Proceedings of the 2022 ACM International Sympo-
sium on Wearable Computers, ISWC ’22, page 49–53,
New York, NY, USA. Association for Computing Ma-
chinery.
L
¨
udtke, H., Wilhelm, B., Adler, M., Schaeffel, F., and Wil-
helm, H. (1998). Mathematical procedures in data
recording and processing of pupillary fatigue waves.
Vision research, 38(19):2889–2896.
Micieli, G., Tassorelli, C., Martignoni, E., Pacchetti, C.,
Bruggi, P., Magri, M., and Nappi, G. (1991). Disor-
dered pupil reactivity in parkinson’s disease. Clinical
Autonomic Research, 1:55–58.
Moser, B. B., Raue, F., Frolov, S., Palacio, S., Hees, J.,
and Dengel, A. (2023). Hitchhiker’s guide to super-
resolution: Introduction and recent advances. IEEE
TPAMI, 45(8):9862–9882.
Moser, B. B., Raue, F., Palacio, S., Frolov, S., and Dengel,
A. (2024a). Latent dataset distillation with diffusion
models. arXiv preprint arXiv:2403.03881.
Moser, B. B., Shanbhag, A. S., Raue, F., Frolov, S., Palacio,
S., and Dengel, A. (2024b). Diffusion models, im-
age super-resolution and everything: A survey. arXiv
preprint arXiv:2401.00736.
Murillo, R., Crucilla, C., Schmittner, J., Hotchkiss, E., and
Pickworth, W. B. (2004). Pupillometry in the detec-
tion of concomitant drug use in opioid-maintained pa-
tients. Methods and findings in experimental and clin-
ical pharmacology, 26(4):271–275.
Murphy, P. R., O’connell, R. G., O’sullivan, M., Robert-
son, I. H., and Balsters, J. H. (2014). Pupil diameter
covaries with bold activity in human locus coeruleus.
Human brain mapping, 35(8):4140–4154.
Mustafa, A., Khan, S. H., Hayat, M., Shen, J., and Shao, L.
(2019). Image super-resolution as a defense against
adversarial attacks. arXiv preprint arXiv:1901.01677.
Na, B. and Fox, G. C. (2020). Object classifications
by image super-resolution preprocessing for convolu-
tional neural networks. Advances in Science, Tech-
nology and Engineering Systems Journal (ASTESJ),
5(2):476–483.
Ni, Y. and Sun, B. (2019). A remote free-head pupillometry
based on deep learning and binocular system. IEEE
Sensors Journal, 19(6):2362–2369.
O’Shea, G. and Komeili, M. (2023). Toward super-
resolution for appearance-based gaze estimation.
arXiv preprint arXiv:2303.10151.
Pedrotti, M., Mirzaei, M. A., Tedesco, A., Chardonnet,
J.-R., M
´
erienne, F., Benedetto, S., and Baccino, T.
(2014). Automatic stress classification with pupil di-
ameter analysis. International Journal of Human-
Computer Interaction, 30(3):220–236.
Pfleging, B., Fekety, D. K., Schmidt, A., and Kun, A. L.
(2016). A model relating pupil diameter to mental
workload and lighting conditions. In Proceedings of
the 2016 CHI Conference on Human Factors in Com-
puting Systems, CHI ’16, page 5776–5788, New York,
NY, USA. Association for Computing Machinery.
Reddy, L. F., Reavis, E. A., Wynn, J. K., and Green, M. F.
(2018). Pupillary responses to a cognitive effort task
in schizophrenia. Schizophrenia Research, 199:53–
57.
Sari, J. N., Hanung, A. N., Lukito, E. N., Santosa, P. I.,
and Ferdiana, R. (2016). A study on algorithms
of pupil diameter measurement. In 2016 2nd In-
ternational Conference on Science and Technology-
Computer (ICST), pages 188–193.
Shah, V., Watanabe, K., Moser, B. B., and Dengel, A.
(2024). Eyedentify: A dataset for pupil diameter es-
timation based on webcam images. arXiv preprint
arXiv:2407.11204.
Shi, W., Caballero, J., Husz
´
ar, F., Totz, J., Aitken, A. P.,
Bishop, R., Rueckert, D., and Wang, Z. (2016). Real-
time single image and video super-resolution using an
efficient sub-pixel convolutional neural network. In
CVPR, pages 1874–1883.
Song, L., Wang, Q., Liu, T., Li, H., Fan, J., Yang, J., and Hu,
B. (2022). Deep robust residual network for super-
resolution of 2d fetal brain mri. Scientific reports,
12(1):406.
Tales, A., Troscianko, T., Lush, D., Haworth, J., Wilcock,
G., and Butler, S. (2001). The pupillary light reflex in
aging and alzheimer’s disease. Aging (Milan, Italy),
13(6):473–478.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
384