
REFERENCES
Agarwal, R. (2012). How can we prevent intradialytic hy-
potension? Current opinion in nephrology and hyper-
tension, 21(6):593–599.
Aljohani, A. (2024). Optimizing Patient Stratification in
Healthcare: A Comparative Analysis of Clustering
Algorithms for EHR Data. International Journal of
Computational Intelligence Systems, 17(1):173.
Barrera-García, J., Cisternas-Caneo, F., Crawford, B.,
Gómez Sánchez, M., and Soto, R. (2023). Feature se-
lection problem and metaheuristics: a systematic lit-
erature review about its formulation, evaluation and
applications. Biomimetics, 9(1):9.
Chen, J. B., Wu, K. C., Moi, S. H., Chuang, L. Y., and Yang,
C. H. (2020). Deep learning for intradialytic hypoten-
sion prediction in hemodialysis patients. IEEE Access,
8:82382–82390.
Cisternas-Caneo, F., Crawford, B., Soto, R., Giachetti, G.,
Paz, Á., and Peña Fritz, Á. (2024). Chaotic binariza-
tion schemes for solving combinatorial optimization
problems using continuous metaheuristics. Mathe-
matics, 12(2).
Ebiaredoh-Mienye, S. A., Swart, T. G., Esenogho, E., and
Mienye, I. D. (2022). A machine learning method
with filter-based feature selection for improved pre-
diction of chronic kidney disease. Bioengineering,
9(8):350.
Flythe, J. E., Chang, T. I., Gallagher, M. P., Lindley, E.,
Madero, M., Sarafidis, P. A., Unruh, M. L., Wang,
A. Y.-M., Weiner, D. E., Cheung, M., et al. (2020).
Blood pressure and volume management in dialysis:
conclusions from a kidney disease: Improving global
outcomes (kdigo) controversies conference. Kidney
international, 97(5):861–876.
Furaz Czerpak, K. R., Puente García, A., Corchete Prats,
E., Moreno de la Higuera, M., Gruss Vergara, E., and
Martín-Hernández, R. (2014). Estrategias para el con-
trol de la hipotensión en hemodiálisis. Nefrología,
6(1):1–14.
Gervasoni, F., Bellocchio, F., Rosenberger, J., Arkossy, O.,
Ion Titapiccolo, J., Kovarova, V., Larkin, J., Nikam,
M., Stuard, S., Tripepi, G. L., Usvyat, L. A., Winter,
A., Neri, L., and Zoccali, C. (2023). Development
and validation of ai-based triage support algorithms
for prevention of intradialytic hypotension. Journal of
Nephrology, 36(7):2001 – 2011. Cited by: 0.
Gómez-Pulido, J. A., Gómez-Pulido, J. M., Rodríguez-
Puyol, D., Polo-Luque, M. L., and Vargas-Lombardo,
M. (2021). Predicting the appearance of hypotension
during hemodialysis sessions using machine learning
classifiers. International Journal of Environmental
Research and Public Health, 18(5):2364.
Haupt, R. L. and Haupt, S. E. (2004). Practical Genetic
Algorithms. John Wiley & Sons.
Hong, D., Chang, H., He, X., Zhan, Y., Tong, R., Wu,
X., and Li, G. (2023). Construction of an early alert
system for intradialytic hypotension before initiating
hemodialysis based on machine learning. Kidney Dis-
eases, 9(5):433 – 442. Cited by: 2; All Open Access,
Gold Open Access.
Kim, H. W., Heo, S. J., Kim, M., Lee, J., Park, K. H., Lee,
G., and Kim, B. S. (2022). Deep learning model for
predicting intradialytic hypotension without privacy
infringement: a retrospective two-center study. Fron-
tiers in Medicine, 9:878858.
Lee, H., Moon, S. J., Kim, S. W., Min, J. W., Park,
H. S., Yoon, H. E., and Chung, B. H. (2023).
Prediction of intradialytic hypotension using pre-
dialysis features—a deep learning–based artificial in-
telligence model. Nephrology Dialysis Transplanta-
tion, 38(10):2310–2320.
Mendoza-Pittí, L., Gómez-Pulido, J. M., Vargas-Lombardo,
M., Gómez-Pulido, J. A., Polo-Luque, M.-L., and
Rodréguez-Puyol, D. (2022). Machine-learning
model to predict the intradialytic hypotension based
on clinical-analytical data. IEEE Access, 10:72065–
72079.
Nayyar, A., Gadhavi, L., and Zaman, N. (2021). Machine
learning in healthcare: review, opportunities and chal-
lenges. Machine Learning and the Internet of Medical
Things in Healthcare, pages 23–45.
Othman, M., Elbasha, A. M., Naga, Y. S., and Moussa,
N. D. (2022). Early prediction of hemodialysis com-
plications employing ensemble techniques. BioMedi-
cal Engineering Online, 21(1). Cited by: 1; All Open
Access, Gold Open Access, Green Open Access.
Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W., and
O’Sullivan, J. M. (2022). A review of feature selec-
tion methods for machine learning-based disease risk
prediction. Frontiers in Bioinformatics, 2:927312.
Rahul, K. and Banyal, R. K. (2022). Metaheuristics ap-
proach to improve data analysis process for the health-
care sector. Procedia Computer Science, 215:98–
103. 4th International Conference on Innovative Data
Communication Technology and Application.
Sociedad Española de Nefrología (2023). La enfermedad
renal crónica en españa 2023. Accessed: 2024-07-12.
Yang, X., Zhao, D., Yu, F., Heidari, A. A., Bano, Y., Ibro-
himov, A., and Chen, X. (2022). Boosted machine
learning model for predicting intradialytic hypoten-
sion using serum biomarkers of nutrition. Computers
in Biology and Medicine, 147:105752.
Zhang, H., Wang, L. C., Chaudhuri, S., Pickering, A.,
Usvyat, L., Larkin, J., and Kotanko, P. (2023). Real-
time prediction of intradialytic hypotension using ma-
chine learning and cloud computing infrastructure.
Nephrology Dialysis Transplantation, 38(7):1761–
1769.
BIOINFORMATICS 2025 - 16th International Conference on Bioinformatics Models, Methods and Algorithms
570