
Hosseini-Kivanani, N., Salobrar-Garc
´
ıa, E., Elvira-
Hurtado, L., Salas, M., Schommer, C., and Leiva,
L. A. (2024b). Predicting alzheimer’s disease and
mild cognitive impairment with off-line and on-line
house drawing tests. In Proc. e-Science.
Hosseini-Kivanani, N., Salobrar-Grac
´
ıa, E., Elvira-
Hurtado, L., L
´
opez-Cuenca, I., de Hoz, R., Ram
´
ırez,
J. M., Gil, P., Salas, M., Schommer, C., and Leiva,
L. A. (2023). Better Together: Combining Different
Handwriting Input Sources Improves Dementia
Screening. In Proc. e-Science.
Hosseinzadeh Taher, M. R., Haghighi, F., Feng, R., Got-
way, M. B., and Liang, J. (2021). A systematic bench-
marking analysis of transfer learning for medical im-
age analysis. In Proc. DART and FAIR Workshops.
Hou, C., Zhang, J., and Zhou, T. (2023). When to learn
what: Model-adaptive data augmentation curriculum.
CoRR. arXiv:2309.04747.
Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. (2017). Densely Connected Convolutional Net-
works. In Proc. CVPR.
Jonske, F., Kim, M., Nasca, E., Evers, J., Haubold, J.,
Hosch, R., Nensa, F., Kamp, M., Seibold, C., Egger,
J., and Kleesiek, J. (2023). Why does my medical
ai look at pictures of birds? exploring the efficacy of
transfer learning across domain boundaries. ArXiv,
abs/2306.17555.
Kebaili, A., Lapuyade-Lahorgue, J., and Ruan, S. (2023).
Deep learning approaches for data augmentation in
medical imaging: A review. J. Imaging, 9.
Ko, B. and Ok, J. (2021). Time matters in using data aug-
mentation for vision-based deep reinforcement learn-
ing. CoRR. arXiv:2102.08581.
Kobayashi, M., Yamada, Y., Shinkawa, K., Nemoto, M.,
Nemoto, K., and Arai, T. (2022). Automated early
detection of alzheimer’s disease by capturing impair-
ments in multiple cognitive domains with multiple
drawing tasks. J. Alzheimer Dis., 88.
Lim, S., Kim, I., Kim, T., Kim, C., and Kim, S. (2019). Fast
autoaugment. In Proc. NeurIPS.
LingChen, T. C., Khonsari, A., Lashkari, A., Nazari, M. R.,
Sambee, J. S., and Nascimento, M. A. (2020). Unifor-
maugment: A search-free probabilistic data augmen-
tation approach. CoRR. arXiv:2003.14348.
Liu, Z., Lv, Q., Li, Y., Yang, Z., and Shen, L. (2023).
Medaugment: Universal automatic data augmenta-
tion plug-in for medical image analysis. CoRR.
arXiv:2306.17466.
Morid, M. A., Borjali, A., and Fiol, G. D. (2021). A scoping
review of transfer learning research on medical image
analysis using imagenet. Comput. Biol. Med.
Muller, S. G. and Hutter, F. (2021). Trivialaugment:
Tuning-free yet state-of-the-art data augmentation. In
Proc. ICCV.
Nalepa, J., Marcinkiewicz, M., and Kawulok, M. (2019).
Data augmentation for brain-tumor segmentation: A
review. Front. Comput. Neurosci., 13.
Nasreddine, Z. S., Phillips, N. A., B
´
edirian, V., Charbon-
neau, S., Whitehead, V., Collin, I., Cummings, J. L.,
and Chertkow, H. (2019). The montreal cognitive as-
sessment, moca: A brief screening tool for mild cog-
nitive impairment. J. Am. Geriatr. Soc., 11(1).
Ogawa, R., Kido, T., and Mochizuki, T. (2019). Effect of
augmented datasets on deep convolutional neural net-
works applied to chest radiographs. Clin. Radiol.
Raksasat, R., Teerapittayanon, S., Itthipuripat, S., Pradit-
pornsilpa, K., Petchlorlian, A., Chotibut, T., Chunha-
ras, C., and Chatnuntawech, I. (2023). Attentive pair-
wise interaction network for ai-assisted clock drawing
test assessment of early visuospatial deficits. Scientific
Reports, 13(1).
Ruengchaijatuporn, N., Chatnuntawech, I., Teerapit-
tayanon, S., Sriswasdi, S., Itthipuripat, S., Hemrun-
grojn, S., Bunyabukkana, P., Petchlorlian, A., Chu-
namchai, S., Chotibut, T., and Chunharas, C. (2022).
An explainable self-attention deep neural network for
detecting mild cognitive impairment using multi-input
digital drawing tasks. Alzheimers Res. Ther., 78(14).
Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on
image data augmentation for deep learning. J. Big
Data, 6.
Shulman, K. I., Pushkar Gold, D., Cohen, C. A., and Zuc-
chero, C. A. (1993). Clock-drawing and dementia in
the community: a longitudinal study. Int. J. Geriatr.
Psychiatry, 8(6).
Spenciere, B., Alves, H., and Charchat-Fichman, H. (2017).
Scoring systems for the clock drawing test: A histori-
cal review. Dement. Neuropsychol., 11(1).
Tan, M. and Le, Q. (2019). EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks. In Tan,
Mingxing and Le, Quoc.
Tian, K., Lin, C., Sun, M., Zhou, L., Yan, J., and
Ouyang, W. (2020). Improving auto-augment
via augmentation-wise weight sharing. CoRR.
arXiv:2009.14737.
Tufail, A. B., Ullah, K., Khan, R. A., Shakir, M., Khan,
M. A., Ullah, I., Ma, Y.-K., and Ali, M. S. (2022). On
improved 3d-cnn-based binary and multiclass clas-
sification of alzheimer’s disease using neuroimag-
ing modalities and data augmentation methods. J.
Healthc. Eng., 2022.
Yun, S., Han, D., Chun, S., Oh, S. J., Yoo, Y., and Choe,
J. (2019). Cutmix: Regularization strategy to train
strong classifiers with localizable features. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision.
Zhang, C., Li, X., Zhang, Z., Cui, J., and Yang, B.
(2022). Bo-aug: learning data augmentation policies
via bayesian optimization. Appl. Intell., 53.
Zhang, H., Ciss
´
e, M., Dauphin, Y., and Lopez-Paz, D.
(2017). mixup: Beyond empirical risk minimization.
CoRR. arXiv:1710.09412.
Zoph, B. and Le, Q. V. (2017). Neural architec-
ture search with reinforcement learning. CoRR.
arXiv:1611.01578.
Efficient Automatic Data Augmentation of CDT Images to Support Cognitive Screening
607