
REFERENCES
Adeoye, J., Hui, L., and Su, Y.-X. (2023). Data-centric ar-
tificial intelligence in oncology: a systematic review
assessing data quality in machine learning models for
head and neck cancer. Journal of Big Data.
Alkan, E., Cai, Y., Devarakota, P., Gala, A., et al. (2022).
Saltcrawler: Ai solution for accelerating velocity
model building. In IMAGE.
Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki,
M., et al. (2017). Advancing the cancer genome at-
las glioma mri collections with expert segmentation
labels and radiomic features. Scientific data.
Bakas, S., Reyes, M., Jakab, A., Bauer, S., et al. (2018).
Identifying the best machine learning algorithms for
brain tumor segmentation, progression assessment,
and overall survival prediction in the brats challenge.
arXiv.
Bakas, S., Sako, C., Akbari, H., Bilello, M., et al. (2022).
The university of pennsylvania glioblastoma (upenn-
gbm) cohort: Advanced mri, clinical, genomics, & ra-
diomics. Scientific data.
Buda, M., Saha, A., and Mazurowski, M. A. (2019). Asso-
ciation of genomic subtypes of lower-grade gliomas
with shape features automatically extracted by a
deep learning algorithm. Computers in biology and
medicine.
Calabrese, E., Villanueva-Meyer, J. E., Rudie, J. D., et al.
(2022). The university of california san francisco pre-
operative diffuse glioma mri dataset. Radiology: Arti-
ficial Intelligence.
Devarakota, P., Gala, A., Li, Z., and Alkan, E. a. (2022).
Deep learning in salt interpretation from r&d to de-
ployment: Challenges and lessons learned. In IMAGE.
Dutta, A., Veldhuis, R., and Spreeuwers, L. (2015). Predict-
ing face recognition performance using image quality.
arXiv.
Galbally, J., Marcel, S., and Fierrez, J. (2013). Image qual-
ity assessment for fake biometric detection: Applica-
tion to iris, fingerprint, and face recognition. IEEE
Trans. image processing.
Hamid, O. H. (2022). From model-centric to data-centric
ai: A paradigm shift or rather a complementary ap-
proach? In ITT.
Jones, I. F. and Davison, I. (2014). Seismic imaging in and
around salt bodies. SEG Interpretation.
Kang, L., Ye, P., Li, Y., and Doermann, D. (2014). Convolu-
tional neural networks for no-reference image quality
assessment. In CVPR.
Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Im-
agenet classification with deep convolutional neural
networks. Communications of the ACM.
Mazurowski, M. A., Clark, K., Czarnek, N. M., Shamses-
fandabadi, P., et al. (2017). Radiogenomics of lower-
grade glioma: algorithmically-assessed tumor shape
is associated with tumor genomic subtypes and patient
outcomes in a multi-institutional study with the cancer
genome atlas data. Journal of neuro-oncology.
Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J.,
et al. (2014). The multimodal brain tumor image seg-
mentation benchmark (brats). IEEE Trans. medical
imaging.
Minaee, S., Boykov, Y., Porikli, F., Plaza, A., et al. (2021).
Image segmentation using deep learning: A survey.
IEEE transactions on pattern analysis and machine
intelligence.
Mirza, S., Nguyen, V. D., Mantini, P., and Shah, S. K.
(2024). Data quality aware approaches for address-
ing model drift of semantic segmentation models. In
VISIGRAPP.
Mittal, A., Moorthy, A. K., and Bovik, A. C. (2011).
Blind/referenceless image spatial quality evaluator. In
ASILOMAR.
Motamedi, M., Sakharnykh, N., and Kaldewey, T. (2021).
A data-centric approach for training deep neural net-
works with less data. arXiv.
Ng, A., Laird, D., and He, L. (2021). Data-centric ai com-
petition.
Nisa, A., Fajri, R., Nashrullah, E., Harahap, F., et al. (2022).
Performance face image quality assessment under the
difference of illumination directions in face recogni-
tion system using faceqnet, sdd-fiqa, and ser-fiq. In
IC3INA.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In MICCAI.
Saeed, S. U., Fu, Y., Baum, Z. M., Yang, Q., et al. (2021).
Learning image quality assessment by reinforcing task
amenable data selection. In International Conference
on Information Processing in Medical Imaging.
Singh, P. (2023). Systematic review of data-centric ap-
proaches in artificial intelligence and machine learn-
ing. Data Science and Management.
Su, S., Yan, Q., Zhu, Y., Zhang, C., et al. (2020). Blindly
assess image quality in the wild guided by a self-
adaptive hyper network. In CVPR.
Wang, Z. and Bovik, A. C. (2006). Modern image quality
assessment. PhD thesis.
Yang, S., Wu, T., Shi, S., Lao, S., et al. (2022). Maniqa:
Multi-dimension attention network for no-reference
image quality assessment. In CVPR.
Yilmaz,
¨
O. (2001). Seismic data analysis, volume 1. SEG.
Zha, D., Bhat, Z. P., Lai, K.-H., Yang, F., et al. (2023). Data-
centric artificial intelligence: A survey. arXiv.
Zhai, G. and Min, X. (2020). Perceptual image quality as-
sessment: a survey. Science China Information Sci-
ences.
Zhang, L., Zhang, L., and Bovik, A. C. (2015). A feature-
enriched completely blind image quality evaluator.
IEEE Trans. Image Processing.
Zhang, W., Ma, K., Yan, J., Deng, D., and Wang, Z. (2018).
Blind image quality assessment using a deep bilinear
convolutional neural network. IEEE Trans. Circuits
and Systems for Video Technology.
Zhuang, N., Zhang, Q., Pan, C., Ni, B., et al. (2019). Recog-
nition oriented facial image quality assessment via
deep convolutional neural network. Neurocomputing.
Integrating Image Quality Assessment Metrics for Enhanced Segmentation Performance in Reconstructed Imaging Datasets
457