Khan, S. K., Shiwakoti, N., Stasinopoulos, P., & Chen, Y.
(2020). Cyber-attacks in the next-generation cars,
mitigation techniques, anticipated readiness and future
directions. Accident Analysis & Prevention, 148,
105837.
Alsoufi, M. A., Razak, S., Siraj, M. M., Nafea, I., Ghaleb,
F. A., Saeed, F., & Nasser, M. (2021). Anomaly-based
intrusion detection systems in iot using deep learning:
A systematic literature review. Applied sciences,
11(18), 8383.
Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J.
(2019). Survey of intrusion detection systems:
techniques, datasets and challenges.
Cybersecurity, 2(1), 1-22.
Liu, H., & Lang, B. (2019). Machine learning and deep
learning methods for intrusion detection systems: A
survey. applied sciences, 9(20), 4396.
Al-Khateeb, M. O., Hassan, M. A., Al-Shourbaji, I., &
Aliero, M. S. (2021). Intelligent Data Analysis
approaches for Knowledge Discovery: Survey and
challenges. Ilkogretim Online, 20(5).
Al-Shourbaji, I., Kachare, P., Fadlelseed, S., Jabbari, A.,
Hussien, A. G., Al-Saqqar, F., ... & Alameen, A. (2023).
Artificial Ecosystem-Based Optimization with Dwarf
Mongoose Optimization for Feature Selection and
Global Optimization Problems. International Journal
of Computational Intelligence Systems, 16(1), 1-24.
Fong, S., Wang, X., Xu, Q., Wong, R., Fiaidhi, J., &
Mohammed, S. (2016). Recent advances in
metaheuristic algorithms: Does the Makara dragon
exist?. The Journal of Supercomputing, 72, 3764-3786.
Xu, J., & Zhang, J. (2014, July). Exploration-exploitation
tradeoffs in metaheuristics: Survey and analysis.
In Proceedings of the 33rd Chinese control
conference (pp. 8633-8638). IEEE.
Kennedy, J., & Eberhart, R. (1995, November). Particle
swarm optimization. In Proceedings of ICNN'95-
international conference on neural networks (Vol. 4,
pp. 1942-1948). IEEE.
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf
optimizer. Advances in engineering software, 69, 46-
61.
Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-
verse optimizer: a nature-inspired algorithm for global
optimization. Neural Computing and Applications, 27,
495-513.
Jia, H., Peng, X., & Lang, C. (2021). Remora optimization
algorithm. Expert Systems with Applications, 185,
115665.
Holland, J. H. (1992). Genetic algorithms. Scientific
american, 267(1), 66-73.
Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W., &
Gandomi, A. H. (2022). Reptile Search Algorithm
(RSA): A nature-inspired meta-heuristic
optimizer. Expert Systems with Applications, 191,
116158.
Z. Elgamal, A. Q. M. Sabri, M. Tubishat, D. Tbaishat, S. N.
Makhadmeh et al., Improved reptile search
optimization algorithm using Chaotic map and
Simulated annealing for feature selection in medical
field
, IEEE Access, vol. 10, pp. 51428β51446, 2022.
S. Ekinci and D. Izci, Enhanced reptile search algorithm
with LΓ©vy flight for vehicle cruise control system
design, Evolutionary Intelligence, vol. 2022, pp. 1β13,
2022.
M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani, A
detailed analysis of the KDD CUP 99 data set, in
proceedings of IEEE conference on symposium on
Computational. Intelligence for Security and. Defense,
Ottawa, ON, Canada, pp. 1β6, 2009.
S. Sapre, P. Ahmadi and K. Islam, A robust comparison of
the KDDCup99 and NSL-KDD IoT network intrusion
detection datasets through various machine learning
algorithms, arXiv preprint, pp. 1-8, 2019.
A. Shiravi, H. Shiravi, M. Tavallaee and A. A. Ghorbani,
Toward developing a systematic approach to generate
benchmark datasets for intrusion detection, Computer.
Security, vol. 31, no. 3, pp. 357β374, 2012.
I. Sharafaldin, A. H. Lashkari and A. A. Ghorbani, Toward
generating a new intrusion detection dataset and
intrusion traffic characterization, in Proceedings of the
4th International. Conference on Information Systems.
Security and Privacy, Funchal, Portugal, vol. 1, no. 2,
pp. 108β116, 2018.
Reptile Search Algorithm Based Feature Selection Approach for Intrusion Detection