
plications of Agents and Multi-Agent Systems, pages
133–144. Springer.
Bonald, T., C. B. G. A. . H. A. (2018). Hierarchical graph
clustering using node pair sampling. Phys. Rev. E.
Despalatovi
´
c, L., Vojkovi
´
c, T., and Vukicevi
´
c, D. (2014).
Community structure in networks: Girvan-newman
algorithm improvement. In 2014 37th international
convention on information and communication tech-
nology, electronics and microelectronics (MIPRO),
pages 997–1002. IEEE.
Drawel, N., Bentahar, J., Laarej, A., and Rjoub, G. (2022).
Formal verification of group and propagated trust in
multi-agent systems. Autonomous Agents and Multi-
Agent Systems, 36(1):19.
Galluccio, L., Michel, O., Comon, P., and Hero, A. O.
(2012). Graph based k-means clustering. Signal Pro-
cessing, 92(9):1970–1984.
Ghosh, S., Halappanavar, M., Tumeo, A., and Kalya-
narainan, A. (2019). Scaling and quality of modular-
ity optimization methods for graph clustering. In 2019
IEEE High Performance Extreme Computing Confer-
ence (HPEC), pages 1–6. IEEE.
Govindaraj, R., Govindaraj, P., Chowdhury, S., Kim, D.,
Tran, D.-T., and Le, A. N. (2021). A review on various
applications of reputation based trust management. In-
ternational Journal of Interactive Mobile Technolo-
gies, 15(10).
Gupta, S. and Sundaram, S. (2023). Moving-landmark as-
sisted distributed learning based decentralized coop-
erative localization (dl-dcl) with fault tolerance. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 37, pages 6175–6182.
Johnson, D. M., Xiong, C., Gao, J., and Corso, J. J.
(2013). Comprehensive cross-hierarchy cluster agree-
ment evaluation. In Workshops at the Twenty-Seventh
AAAI Conference on Artificial Intelligence.
Johnson, J. and Sokol, D. D. (2020). Understanding ai
collusion and compliance. Cambridge Handbook of
Compliance,(D. Daniel Sokol & Benjamin van Rooij,
editors),(Forthcoming).
Khalid, R., Samuel, O., Javaid, N., Aldegheishem, A.,
Shafiq, M., and Alrajeh, N. (2021). A secure trust
method for multi-agent system in smart grids using
blockchain. IEEE Access, 9:59848–59859.
Kołaczek, G. (2010). Social network analysis based
approach to trust modeling for autonomous multi-
agent systems. In Agent and Multi-agent Technology
for Internet and Enterprise Systems, pages 137–156.
Springer.
Liu, J. and Han, J. (2018). Spectral clustering. In Data
clustering, pages 177–200. Chapman and Hall/CRC.
Marciano, A. (2024). Trust and reputation systems: detec-
tion of malicious agents and a novel equilibrium prob-
lem.
McCallum, A. (2024). Cora.
Mohanty, P. (2020). A computational approach to identify
covertness and collusion in social networks. PhD the-
sis, University of Minnesota.
Newman, M. E. J., Cantwell, G. T., and Young, J.-G.
(2020). Improved mutual information measure for
clustering, classification, and community detection.
Phys. Rev. E, 101:042304.
Nezamoddini, N. and Gholami, A. (2022). A survey of
adaptive multi-agent networks and their applications
in smart cities. Smart Cities, 5(1):318–347.
Onta
˜
n
´
on, S. (2020). An overview of distance and similarity
functions for structured data. Artificial Intelligence
Review, 53(7):5309–5351.
Ramamoorthy, H., Gupta, S., and Sundaram, S. (2024).
Distributed Online Life-Long Learning (DOL3) for
Multi-agent Trust and Reputation Assessment in E-
commerce.
Reitter, D. and Lebiere, C. (2012). Social cognition: Mem-
ory decay and adaptive information filtering for ro-
bust information maintenance. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 26, pages 242–248.
Rodr
´
ıguez, M. J. G., Rodr
´
ıguez-Montequ
´
ın, V., Ballesteros-
P
´
erez, P., Love, P. E., and Signor, R. (2022). Col-
lusion detection in public procurement auctions with
machine learning algorithms. Automation in Con-
struction, 133:104047.
Rossetti, G. and Cazabet, R. (2018). Community discov-
ery in dynamic networks: a survey. ACM computing
surveys (CSUR), 51(2):1–37.
Seifikar, M., Farzi, S., and Barati, M. (2020). C-blondel:
an efficient louvain-based dynamic community detec-
tion algorithm. IEEE Transactions on Computational
Social Systems, 7(2):308–318.
Sievers, M. (2020). Modeling Trust and Reputation in Mul-
tiagent Systems. Springer International Publishing,
Cham, 1st edition.
Wang, W., Tang, T., Xia, F., Gong, Z., Chen, Z., and Liu,
H. (2022). Collaborative filtering with network repre-
sentation learning for citation recommendation. IEEE
Transactions on Big Data, 8(5):1233–1246.
Wu, L., Zhang, Q., Chen, C.-H., Guo, K., and Wang, D.
(2020). Deep learning techniques for community de-
tection in social networks. IEEE Access, 8:96016–
96026.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
90