experiment results show that separating these
components enhanced the Brillouin frequency shift
(BFS) resolution, with the conventional spectrum
width improved from 128 MHz to 53 MHz using the
real spectrum. Additionally, temperature sensitivity
was demonstrated by comparing heated and unheated
imaginary spectra. A 50 MHz BFS shift, 40 cm spatial
resolution, and reduced processing time from 7.21s to
7.08s were achieved.
ACKNOWLEDGEMENTS
This research was supported by the Fundamental
Research Grant Scheme (FRGS) from the Ministry of
Higher Education of Malaysia (MOHE): Grant No.
FRGS/1/2023/TK07/UKM/02/2.
REFERENCES
Almoosa, A. S. K., Hamzah, A. E., Zan, M. S. D., Ibrahim,
M. F., Arsad, N., & Elgaud, M. M. (2022). Improving
the Brillouin frequency shift measurement resolution in
the Brillouin optical time domain reflectometry
(BOTDR) fiber sensor by artificial neural network
(ANN). Optical Fiber Technology, 70, 102860.
Antonacci, G., Foreman, M. R., Paterson, C., & Török, P.
(2013). Spectral broadening in Brillouin imaging.
Applied Physics Letters, 103(22).
Bao, X., Zhou, Z., & Wang, Y. (2021). Review: distributed
time-domain sensors based on Brillouin scattering and
FWM enhanced SBS for temperature, strain and
acoustic wave detection. PhotoniX, 2(1).
Horiguchi, T., Masui, Y., & Zan, M. S. D. (2019). Analysis
of Phase-Shift Pulse brillouin Optical Time-Domain
reflectometry. Sensors, 19(7), 1497.
Nonogaki, H., Sei, D., Zan, M. S. D., & Tanaka, Y. (2024).
Brillouin frequency shift measurement by zero-crossing
point search in virtually synthesized spectra of Brillouin
gain and loss. Applied Physics Express.
Peng, J., Lu, Y., Zhang, Y., Wu, Z., & Zhang, Z. (2022).
Double-Slope assisted brillouin optical time domain
reflectometry with linear regions merging. IEEE
Photonics Technology Letters, 34(15), 819–822.
Smith, S. W. (1997). The scientist and engineer’s guide to
digital signal processing. California Technical Pub.
Zan, M. S. D., Almoosa, A. S. K., Ibrahim, M. F., Elgaud,
M. M., Hamzah, A. E., Arsad, N., Mokhtar, M. H. H.,
& Bakar, A. a. A. (2022). The effect of pulse duration
on the Brillouin frequency shift accuracy in the
differential cross-spectrum BOTDR (DCS-BOTDR)
fiber sensor. Optical Fiber Technology, 72, 102977.
Zan, M. S. D., Masui, Y., & Horiguchi, T. (2018).
Differential Cross Spectrum Technique for Improving
the Spatial Resolution of BOTDR Sensor. In 2018 IEEE
7th International Conference on Photonics (ICP).
Zan, M. S. D., Mokhtar, M. H. H., Elgaud, M. M., Bakar,
A. a. A., Arsad, N., & Mahdi, M. A. (2020). Pulse
Coding Technique in Differential Cross-Spectrum
BOTDR for Improving the Brillouin Frequency
Accuracy and Spatial Resolution (pp. 11–12).