
autism spectrum disorder using deep learning and the
ABIDE dataset. NeuroImage: Clinical, 17:16–23.
Jiang, X., Shen, Y., Yao, J., Zhang, L., Xu, L., Feng, R., Cai,
L., Liu, J., Chen, W., and Wang, J. (2019). Connec-
tome analysis of functional and structural hemispheric
brain networks in major depressive disorder. Transla-
tional psychiatry, 9(1):136.
Kong, X.-z., Liu, Z., Huang, L., Wang, X., Yang, Z., Zhou,
G., Zhen, Z., and Liu, J. (2015). Mapping individual
brain networks using statistical similarity in regional
morphology from mri. PloS one, 10(11):e0141840.
Krupnik, R., Yovel, Y., and Assaf, Y. (2021). Inner
hemispheric and interhemispheric connectivity bal-
ance in the human brain. Journal of Neuroscience,
41(40):8351–8361.
Latora, V. and Marchiori, M. (2001). Efficient behav-
ior of small-world networks. Physical review letters,
87(19):198701.
Li, J., Seidlitz, J., Suckling, J., Fan, F., Ji, G.-J., Meng, Y.,
Yang, S., Wang, K., Qiu, J., Chen, H., et al. (2021).
Cortical structural differences in major depressive dis-
order correlate with cell type-specific transcriptional
signatures. Nature communications, 12(1):1647.
Li, W., Yang, C., Shi, F., Wu, S., Wang, Q., Nie, Y., and
Zhang, X. (2017). Construction of individual mor-
phological brain networks with multiple morphomet-
ric features. Frontiers in Neuroanatomy, 11:34.
Lo, C.-Y. Z., He, Y., and Lin, C.-P. (2011). Graph theoret-
ical analysis of human brain structural networks. Re-
views in the Neurosciences, 22(5):551–563.
Newman, M. (2010). Networks: An Introduction. Oxford
University Press.
Newman, M. E. (2002). Assortative mixing in networks.
Physical review letters, 89(20):208701.
Onnela, J.-P., Saram
¨
aki, J., Kert
´
esz, J., and Kaski, K.
(2005). Intensity and coherence of motifs in weighted
complex networks. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics, 71(6):065103.
Park, H.-J. and Friston, K. (2013). Structural and functional
brain networks: from connections to cognition. Sci-
ence, 342(6158):1238411.
Rubinov, M. and Sporns, O. (2010). Complex network mea-
sures of brain connectivity: uses and interpretations.
Neuroimage, 52(3):1059–1069.
Santarnecchi, E., Tatti, E., Rossi, S., Serino, V., and Rossi,
A. (2015). Intelligence-related differences in the
asymmetry of spontaneous cerebral activity. Human
brain mapping, 36(9):3586–3602.
Sebenius, I., Seidlitz, J., Warrier, V., Bethlehem, R. A.,
Alexander-Bloch, A., Mallard, T. T., Garcia, R. R.,
Bullmore, E. T., and Morgan, S. E. (2023). Robust
estimation of cortical similarity networks from brain
mri. Nature Neuroscience, 26(8):1461–1471.
Seidlitz, J., V
´
a
ˇ
sa, F., Shinn, M., Romero-Garcia, R.,
Whitaker, K. J., V
´
ertes, P. E., Wagstyl, K., Reardon,
P. K., Clasen, L., Liu, S., et al. (2018). Morphometric
similarity networks detect microscale cortical organi-
zation and predict inter-individual cognitive variation.
Neuron, 97(1):231–247.
Shinn, M., Romero-Garcia, R., Seidlitz, J., V
´
a
ˇ
sa, F.,
V
´
ertes, P. E., and Bullmore, E. (2017). Versatility of
nodal affiliation to communities. Scientific Reports,
7(1):4273.
Sol
´
e-Casals, J., Serra-Grabulosa, J. M., Romero-Garcia,
R., Vilaseca, G., Adan, A., Vilar
´
o, N., Bargall
´
o, N.,
and Bullmore, E. T. (2019). Structural brain net-
work of gifted children has a more integrated and
versatile topology. Brain Structure and Function,
224(7):2373–2383.
Sun, K., Chen, G., Liu, C., Chu, Z., Huang, L., Li, Z.,
Zhong, S., Ye, X., Zhang, Y., Jia, Y., et al. (2024a). A
novel msn-ii feature extracted from t1-weighted mri
for discriminating between bd patients and mdd pa-
tients. Journal of Affective Disorders.
Sun, Y., Chen, P., Liu, Y., and Zhao, K. (2024b). Macroscale
brain structural network coupling is related to ad pro-
gression. In 2024 IEEE International Symposium on
Biomedical Imaging (ISBI), pages 1–4. IEEE.
Sun, Y., Lee, R., Chen, Y., Collinson, S., Thakor, N., Bez-
erianos, A., and Sim, K. (2015). Progressive gen-
der differences of structural brain networks in healthy
adults: a longitudinal, diffusion tensor imaging study.
PloS one, 10(3):e0118857.
Van Wijk, B. C., Stam, C. J., and Daffertshofer, A. (2010).
Comparing brain networks of different size and con-
nectivity density using graph theory. PloS one,
5(10):e13701.
V
´
a
ˇ
sa, F., Seidlitz, J., Romero-Garcia, R., Whitaker, K. J.,
Rosenthal, G., V
´
ertes, P. E., Shinn, M., Alexander-
Bloch, A., Fonagy, P., Dolan, R. J., et al. (2018). Ado-
lescent tuning of association cortex in human struc-
tural brain networks. Cerebral Cortex, 28(1):281–
294.
V
´
ertes, P. E., Rittman, T., Whitaker, K. J., Romero-Garcia,
R., V
´
a
ˇ
sa, F., Kitzbichler, M. G., Wagstyl, K., Fonagy,
P., Dolan, R. J., Jones, P. B., et al. (2016). Gene tran-
scription profiles associated with inter-modular hubs
and connection distance in human functional magnetic
resonance imaging networks. Philosophical Trans-
actions of the Royal Society B: Biological Sciences,
371(1705):20150362.
Von Economo, C. (1929). The cytoarchitectonics of the hu-
man cerebral cortex. H. Milford Oxford University
Press.
Watts, D. J. and Strogatz, S. H. (1998). Collective dynam-
ics of ‘small-world’networks. nature, 393(6684):440–
442.
Xia, M., Wang, J., and He, Y. (2013). Brainnet viewer:
a network visualization tool for human brain connec-
tomics. PloS one, 8(7):e68910.
Yu, K., Wang, X., Li, Q., Zhang, X., Li, X., and Li, S.
(2018). Individual morphological brain network con-
struction based on multivariate euclidean distances be-
tween brain regions. Frontiers in human neuroscience,
12:204.
Zhang, J., Feng, F., Han, T., Duan, F., Sun, Z., Caiafa, C. F.,
and Sol
´
e-Casals, J. (2021). A hybrid method to select
morphometric features using tensor completion and f-
score rank for gifted children identification. Science
China Technological Sciences, 64(9):1863–1871.
BIOSIGNALS 2025 - 18th International Conference on Bio-inspired Systems and Signal Processing
740