
Ferreira, E. and Silveira, G. (2024). Classification and
counting of cells in brightfield microscopy images: an
application of convolutional neural networks. Scien-
tific Reports, 14(1):9031.
Gao, Z., Xu, J., Chen, K., Wang, S., Ouyang, Q., and Luo,
C. (2020). Comparative analysis of yeast replicative
lifespan in different trapping structures using an inte-
grated microfluidic system. Advanced Materials Tech-
nologies, 5(12):2000655.
Gu, H., Dong, H., Yang, J., and Mazurowski, M. A. (2024).
How to build the best medical image segmentation al-
gorithm using foundation models: a comprehensive
empirical study with segment anything model. arXiv
preprint arXiv:2404.09957.
Haja, A. and Schomaker, L. R. (2022). A fully automated
end-to-end process for fluorescence microscopy im-
ages of yeast cells: From segmentation to detection
and classification. In Proceedings of 2021 Interna-
tional Conference on Medical Imaging and Computer-
Aided Diagnosis (MICAD 2021) Medical Imaging and
Computer-Aided Diagnosis, pages 37–46. Springer.
Hancock, J. (2004). Jaccard Distance (Jaccard Index, Jac-
card Similarity Coefficient).
He, F., Mahmud, M. P., Kouzani, A. Z., Anwar, A., Jiang,
F., and Ling, S. H. (2022). An improved slic algorithm
for segmentation of microscopic cell images. Biomed-
ical Signal Processing and Control, 73:103464.
Khalid, N., Froes, T. C., Caroprese, M., Lovell, G., Trygg,
J., Dengel, A., and Ahmed, S. (2023). Pace: Point
annotation-based cell segmentation for efficient mi-
croscopic image analysis. In International Confer-
ence on Artificial Neural Networks, pages 545–557.
Springer.
Khalid, N., Koochali, M., Leon, D. N. L., Caroprese, M.,
Lovell, G., Porto, D. A., Trygg, J., Dengel, A., and
Ahmed, S. (2024). Cellgenie: An end-to-end pipeline
for synthetic cellular data generation and segmenta-
tion: A use case for cell segmentation in microscopic
images. In Annual Conference on Medical Image Un-
derstanding and Analysis, pages 387–401. Springer.
Khalid, N., Koochali, M., Rajashekar, V., Munir, M., Ed-
lund, C., Jackson, T. R., Trygg, J., Sj
¨
ogren, R., Den-
gel, A., and Ahmed, S. (2022). Deepmucs: a frame-
work for co-culture microscopic image analysis: from
generation to segmentation. In 2022 IEEE-EMBS In-
ternational Conference on Biomedical and Health In-
formatics (BHI), pages 01–04. IEEE.
Kirillov, A., He, K., Girshick, R., Rother, C., and Doll
´
ar, P.
(2019). Panoptic segmentation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 9404–9413.
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C.,
Lo, W.-Y., et al. (2023). Segment anything. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4015–4026.
Kong, Y., Li, H., Ren, Y., Genchev, G. Z., Wang, X.,
Zhao, H., Xie, Z., and Lu, H. (2020). Automated
yeast cells segmentation and counting using a parallel
u-net based two-stage framework. OSA Continuum,
3(4):982–992.
Kruitbosch, H. T., Mzayek, Y., Omlor, S., Guerra, P., and
Milias-Argeitis, A. (2022). A convolutional neural
network for segmentation of yeast cells without man-
ual training annotations. Bioinformatics, 38(5):1427–
1433.
Lee, B. H. (2021). Advanced Fermentation and Cell Tech-
nology, 2 Volume Set. John Wiley & Sons.
Li, Y., Mao, H., Girshick, R., and He, K. (2022). Explor-
ing plain vision transformer backbones for object de-
tection. In European conference on computer vision,
pages 280–296. Springer.
Lin, T.-Y., Doll
´
ar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017). Feature pyramid networks
for object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2117–2125.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Com-
puter Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part V 13, pages 740–755. Springer.
Liu, P., Liu, H., Yuan, D., Jang, D., Yan, S., and Li, M.
(2020). Separation and enrichment of yeast saccha-
romyces cerevisiae by shape using viscoelastic mi-
crofluidics. Analytical Chemistry, 93(3):1586–1595.
Loh, D. R., Yong, W. X., Yapeter, J., Subburaj, K., and
Chandramohanadas, R. (2021). A deep learning ap-
proach to the screening of malaria infection: Auto-
mated and rapid cell counting, object detection and
instance segmentation using mask r-cnn. Computer-
ized Medical Imaging and Graphics, 88:101845.
Long, F. (2020). Microscopy cell nuclei segmentation with
enhanced u-net. BMC bioinformatics, 21(1):8.
Loshchilov, I. (2017). Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.
Lugagne, J.-B., Lin, H., and Dunlop, M. J. (2020). Delta:
Automated cell segmentation, tracking, and lineage
reconstruction using deep learning. PLoS computa-
tional biology, 16(4):e1007673.
Mahmoud, L. N. K. (2019). A dictionary-based denois-
ing method toward a robust segmentation of noisy and
densely packed nuclei in 3D biological microscopy
images. PhD thesis, Sorbonne Universit
´
e.
Mandyartha, E. P., Anggraeny, F. T., Muttaqin, F., and Ak-
bar, F. A. (2020). Global and adaptive thresholding
technique for white blood cell image segmentation. In
Journal of Physics: Conference Series, volume 1569,
page 022054. IOP Publishing.
Mart
´
ınez, J. L., Liu, L., Petranovic, D., and Nielsen, J.
(2012). Pharmaceutical protein production by yeast:
towards production of human blood proteins by mi-
crobial fermentation. Current opinion in biotechnol-
ogy, 23(6):965–971.
Maur
´
ıcio, J., Domingues, I., and Bernardino, J. (2023).
Comparing vision transformers and convolutional
neural networks for image classification: A literature
review. Applied Sciences, 13(9):5521.
Mohammed, E. A., Mohamed, M. M., Naugler, C., and Far,
B. H. (2013). Chronic lymphocytic leukemia cell seg-
mentation from microscopic blood images using wa-
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
416