
edge amalgamation. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 36–50. Springer.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee.
Hoang, M.-H., Kim, S.-H., Yang, H.-J., and Lee, G.-S.
(2021). Context-aware emotion recognition based on
visual relationship detection. IEEE Access, 9:90465–
90474.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Kosti, R., Alvarez, J. M., Recasens, A., and Lapedriza, A.
(2017). Emotic: Emotions in context dataset. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 61–69.
Kosti, R., Alvarez, J. M., Recasens, A., and Lapedriza,
A. (2019). Context based emotion recognition using
emotic dataset. IEEE transactions on pattern analysis
and machine intelligence, 42(11):2755–2766.
Lee, J., Kim, S., Kim, S., Park, J., and Sohn, K. (2019).
Context-aware emotion recognition networks. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 10143–10152.
Li, S. and Deng, W. (2020). Deep facial expression recog-
nition: A survey. IEEE transactions on affective com-
puting, 13(3):1195–1215.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Com-
puter Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part V 13, pages 740–755. Springer.
Luo, S., Wang, X., Fang, G., Hu, Y., Tao, D., and Song,
M. (2019). Knowledge amalgamation from heteroge-
neous networks by common feature learning. arXiv
preprint arXiv:1906.10546.
Mittal, T., Guhan, P., Bhattacharya, U., Chandra, R., Bera,
A., and Manocha, D. (2020). Emoticon: Context-
aware multimodal emotion recognition using frege’s
principle. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 14234–14243.
Mollahosseini, A., Hasani, B., and Mahoor, M. H. (2017).
Affectnet: A database for facial expression, valence,
and arousal computing in the wild. IEEE Transac-
tions on Affective Computing, 10(1):18–31.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.
Shen, C., Wang, X., Song, J., Sun, L., and Song, M.
(2019a). Amalgamating knowledge towards compre-
hensive classification. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 3068–3075.
Shen, C., Xue, M., Wang, X., Song, J., Sun, L., and Song,
M. (2019b). Customizing student networks from het-
erogeneous teachers via adaptive knowledge amalga-
mation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 3504–
3513.
Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao,
Y., Liu, D., Mu, Y., Tan, M., Wang, X., et al. (2020).
Deep high-resolution representation learning for vi-
sual recognition. IEEE transactions on pattern anal-
ysis and machine intelligence, 43(10):3349–3364.
Wang, Z., Lao, L., Zhang, X., Li, Y., Zhang, T., and Cui,
Z. (2022). Context-dependent emotion recognition.
Journal of Visual Communication and Image Repre-
sentation, 89:103679.
Yang, D., Huang, S., Wang, S., Liu, Y., Zhai, P., Su, L., Li,
M., and Zhang, L. (2022). Emotion recognition for
multiple context awareness. In European Conference
on Computer Vision, pages 144–162. Springer.
Yang, J., Huang, Q., Ding, T., Lischinski, D., Cohen-Or, D.,
and Huang, H. (2023). Emoset: A large-scale visual
emotion dataset with rich attributes. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 20383–20394.
Ye, J., Wang, X., Ji, Y., Ou, K., and Song, M. (2019).
Amalgamating filtered knowledge: Learning task-
customized student from multi-task teachers. arXiv
preprint arXiv:1905.11569.
Zhang, M., Liang, Y., and Ma, H. (2019). Context-aware
affective graph reasoning for emotion recognition. In
2019 IEEE International Conference on Multimedia
and Expo (ICME), pages 151–156. IEEE.
Zhou, X., Wang, D., and Kr
¨
ahenb
¨
uhl, P. (2019). Objects as
points. arXiv preprint arXiv:1904.07850.
Knowledge Amalgamation for Single-Shot Context-Aware Emotion Recognition
419