
samples, reflecting the benefits of mimicking biologi-
cal brain strategies in AI development.
Future work includes applying this method to
complex datasets, optimizing hyperparameters, and
comparing it with state-of-the-art sequential learning
methods to validate its effectiveness.
ACKNOWLEDGMENTS
I am grateful to Mr Naoki Kanemoto for participating
in the discussions that contributed to this paper. I also
thank the reviewers for their constructive feedback.
REFERENCES
French, R. M. (1999). Catastrophic forgetting in connec-
tionist networks. TRENDS in Cognitive Sciences,
3(4):128–135.
Golden, R., Delanois, J. E., Sanda, P., and Bazhenov,
M. (2022). Sleep prevents catastrophic forget-
ting in spiking neural networks by forming a joint
synaptic weight representation. PLoS Comput Biol,
18(11):e1010628.
Hayes, T. L., Kafle, K., Shrestha, R., Acharya, M., and
Kanan, C. (2019). Remind your neural network to
prevent catastrophic forgetting. CoRR.
Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
de Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. (2019). Parameter-efficient transfer learn-
ing for nlp. In Proceedings of the 36th International
Conference on Machine Learning (ICML), 2019, page
2790–2799.
Hsu, Y.-C., Liu, Y.-C., Ramasamy, A., and Kira, Z. (2018).
Re-evaluating continual learning scenarios: A cate-
gorization and case for strong baselines. In Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R., editors, Advances
in Neural Information Processing Systems 31. Curran
Associates, Inc.
Kemker, R. and Kanan, C. (2017). Fearnet: Brain-
inspired model for incremental learning. ArXiv,
abs/1711.10563.
Kemker, R. and Kanan, C. (2018). Fearnet: Brain-inspired
model for incremental learning. In International Con-
ference on Learning Representations ICLR2018.
Kingma, D. P. and Welling, M. (2014). Auto-encoding vari-
ational bayes. CoRR.
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., and
Ramalho, T. (2017). Overcoming catastrophic forget-
ting in neural networks. Proceeding of the National
Acacemy of United States of America, 114(13):3521–
3526.
Lesort, T. L., Gepperth, A., Stoian, A., and Filliat, D.
(2019). Marginal replay vs conditional replay for con-
tinual learning. In Tetko, I. V., K
˚
urkov
´
a, V., Karpov,
P., and Theis, F., editors, Artificial Neural Networks
and Machine Learning – ICANN 2019, volume 11728
of Lecture Notes in Computer Science, pages 466–
480, Munich, Germany. Springer.
Liu, X., Wu, C., Menta, M., Herranz, L., Raducanu, B.,
Bagdanov, A. D., Jui, S., and van de Weijer, J. (2020).
Generative feature replay for class-incremental learn-
ing. IEEE, pages 915–924.
Mallya, A. and Lazebnik, S. (2018). Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 7765–
7773.
Parisi, G. I., Tani, J., Weber, C., and Wermter, S. (2017).
Lifelong learning of human actions with deep neural
network. Neural Networks, 96:137–149.
Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer,
H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R.,
and Hadsell, R. (2016). Progressive neural networks.
CoRR.
Shin, H., Lee, J. K., Kim, J., and Kim, J. (2018). Con-
tinual learning with deep generative replay. In Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R., editors, Advances
in Neural Information Processing Systems 31. Curran
Associates, Inc.
van de Ven, G. M., Siegelmann, H. T., and Tolias, A. S.
(2020). Brain-inspired replay for continual learning-
with artificial neural networks. Nature communica-
tions, 11(4069):1–14.
Yamauchi, K. and Hayami, J. (2007). Incremental learning
and model selection for radial basis function network
through sleep. IEICE TRANSACTIONS on Informa-
tion and Systems, E90-D(4):722–735.
Zenke, F., Poole, B., and Ganguli, S. (2017). Continual
learning through synaptic intelligence. In Proceed-
ings of the 34th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017.
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
250