
REFERENCES
Bankhead, P. (2022). Developing image analysis meth-
ods for digital pathology. The Journal of Pathology,
257(4):391–402.
Burns, B. L., Rhoads, D. D., and Misra, A. (2023). The use
of machine learning for image analysis artificial intel-
ligence in clinical microbiology. Journal of clinical
microbiology, 61(9):e02336–21.
Caball
´
e-Cervig
´
on, N., Castillo-Sequera, J. L., G
´
omez-
Pulido, J. A., G
´
omez-Pulido, J. M., and Polo-Luque,
M. L. (2020). Machine learning applied to diagno-
sis of human diseases: A systematic review. Applied
Sciences, 10(15):5135.
Dong, M., Wang, C., Li, H., Yan, Y., Ma, X., Li, H., Li,
X., Wang, H., Zhang, Y., Qi, W., et al. (2022). Aer-
obic vaginitis diagnosis criteria combining gram stain
with clinical features: an establishment and prospec-
tive validation study. Diagnostics, 12(1):185.
Gonc¸alves, B., Ferreira, C., Alves, C. T., Henriques, M.,
Azeredo, J., and Silva, S. (2016). Vulvovaginal can-
didiasis: Epidemiology, microbiology and risk fac-
tors. Critical reviews in microbiology, 42(6):905–927.
Hao, R., Liu, L., Zhang, J., Wang, X., Liu, J., Du, X., He,
W., Liao, J., Liu, L., and Mao, Y. (2022). A data-
efficient framework for the identification of vaginitis
based on deep learning. Journal of Healthcare Engi-
neering, 2022.
Kalia, N., Singh, J., and Kaur, M. (2020). Microbiota in
vaginal health and pathogenesis of recurrent vulvo-
vaginal infections: a critical review. Annals of clinical
microbiology and antimicrobials, 19(1):1–19.
Lam, L. H. T., Do, D. T., Diep, D. T. N., Nguyet, D.
L. N., Truong, Q. D., Tri, T. T., Thanh, H. N., and
Le, N. Q. K. (2022). Molecular subtype classifica-
tion of low-grade gliomas using magnetic resonance
imaging-based radiomics and machine learning. NMR
in Biomedicine, 35(11):e4792.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Ledeboer, N. A. and Dallas, S. D. (2014). Point-
counterpoint: the automated clinical microbiology
laboratory: fact or fantasy? Journal of clinical mi-
crobiology, 52(9):3140–3146.
Lev-Sagie, A., Strauss, D., and Ben Chetrit, A. (2023).
Diagnostic performance of an automated microscopy
and ph test for diagnosis of vaginitis. NPJ Digital
Medicine, 6(1):66.
Peiffer-Smadja, N., Delli
`
ere, S., Rodriguez, C., Birgand, G.,
Lescure, F.-X., Fourati, S., and Rupp
´
e, E. (2020). Ma-
chine learning in the clinical microbiology laboratory:
has the time come for routine practice? Clinical Mi-
crobiology and Infection, 26(10):1300–1309.
Sirohi, M., Lall, M., Yenishetti, S., Panat, L., and Ku-
mar, A. (2022). Development of a machine learn-
ing image segmentation-based algorithm for the de-
termination of the adequacy of gram-stained sputum
smear images. Medical Journal Armed Forces India,
78(3):339–344.
Smith, K. P., Kang, A. D., and Kirby, J. E. (2018). Auto-
mated interpretation of blood culture gram stains by
use of a deep convolutional neural network. Journal
of Clinical Microbiology, 56(3):e01521–17.
Smith, K. P. and Kirby, J. E. (2020). Image analysis and ar-
tificial intelligence in infectious disease diagnostics.
Clinical Microbiology and Infection, 26(10):1318–
1323.
Smith, K. P., Wang, H., Durant, T. J., Mathison, B. A.,
Sharp, S. E., Kirby, J. E., Long, S. W., and Rhoads,
D. D. (2020). Applications of artificial intelligence in
clinical microbiology diagnostic testing. Clinical Mi-
crobiology Newsletter, 42(8):61–70.
Verhelst, R., Verstraelen, H., Claeys, G., Verschraegen, G.,
Van Simaey, L., De Ganck, C., De Backer, E., Tem-
merman, M., and Vaneechoutte, M. (2005). Compari-
son between gram stain and culture for the character-
ization of vaginal microflora: definition of a distinct
grade that resembles grade i microflora and revised
categorization of grade i microflora. BMC microbiol-
ogy, 5:1–11.
Zhang, J., Lu, S., Wang, X., Du, X., Ni, G., Liu, J., Liu,
L., and Liu, Y. (2017). Automatic identification of
fungi in microscopic leucorrhea images. JOSA A,
34(9):1484–1489.
Zhao, K., Gao, P., Liu, S., Wang, Y., Li, G., and Wang,
Y. (2022). A vaginitis classification method based
on multi-spectral image feature fusion. Sensors,
22(3):1132.
BIOINFORMATICS 2025 - 16th International Conference on Bioinformatics Models, Methods and Algorithms
578