
ACKNOWLEDGEMENTS
This work has been funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) - SFB 1608 - 501798263.
REFERENCES
Amini, A., Schwarting, W., Soleimany, A., and Rus, D.
(2020). Deep evidential regression. In Advances in
Neural Information Processing Systems, volume 33,
pages 14927–14937. Curran Associates, Inc.
Banino, A., Balaguer, J., and Blundell, C. (2021). Ponder-
net: Learning to ponder.
Berrendorf, M., Faerman, E., Melnychuk, V., Tresp, V., and
Seidl, T. (2020). Knowledge graph entity alignment
with graph convolutional networks: Lessons learned.
In Advances in Information Retrieval, pages 3–11,
Cham. Springer International Publishing.
Biswas, R., Portisch, J., Paulheim, H., Sack, H., and Alam,
M. (2022). Entity type prediction leveraging graph
walks and entity descriptions. In The Semantic Web
- ISWC 2022 - 21st International Semantic Web Con-
ference, Proceedings, volume 13489 of Lecture Notes
in Computer Science, pages 392–410.
Biswas, R., Sofronova, R., Sack, H., and Alam, M. (2021).
Cat2type: Wikipedia category embeddings for en-
tity typing in knowledge graphs. In Proceedings of
the 11th on Knowledge Capture Conference, K-CAP,
page 81–88. Association for Computing Machinery.
Biswas, R., T
¨
urker, R., Moghaddam, F. B., Koutraki, M.,
and Sack, H. (2018). Wikipedia infobox type predic-
tion using embeddings. In DL4KGS@ESWC.
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and
Taylor, J. (2008). Freebase: a collaboratively cre-
ated graph database for structuring human knowledge.
In Proceedings of the 2008 ACM SIGMOD inter-
national conference on Management of data, pages
1247–1250.
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. (2013a). Translating embeddings for
modeling multi-relational data. In Advances in Neu-
ral Information Processing Systems, volume 26. Cur-
ran Associates, Inc.
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. (2013b). Translating embeddings for
modeling multi-relational data. Advances in neural
information processing systems, 26.
Busbridge, D., Sherburn, D., Cavallo, P., and Hammerla,
N. Y. (2019). Relational graph attention networks.
Chen, Y., Zou, L., and Qin, Z. (2019). Gated relational
graph neural network for semi-supervised learning on
knowledge graphs. In Web Information Systems En-
gineering – WISE 2019, pages 617–629. Springer In-
ternational Publishing.
de Vries, G. K. D. and de Rooij, S. (2015). Substructure
counting graph kernels for machine learning from rdf
data. Journal of Web Semantics, 35:71–84.
Dong, T., Wang, Z., Li, J., Bauckhage, C., and Cremers,
A. B. (2019). Triple classification using regions and
fine-grained entity typing. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):77–85.
Hamilton, W. L., Ying, R., and Leskovec, J. (2017). In-
ductive representation learning on large graphs. In
Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS, page
1025–1035.
Heist, N., Hertling, S., Ringler, D., and Paulheim, H.
(2020). Knowledge graphs on the web–an overview.
In Knowledge Graphs for eXplainable Artificial Intel-
ligence: Foundations, Applications and Challenges,
pages 3–22. IOS Press.
Kejriwal, M. and Szekely, P. A. (2017). Supervised typ-
ing of big graphs using semantic embeddings. CoRR,
abs/1703.07805.
Kipf, T. N. and Welling, M. (2016). Semi-supervised clas-
sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.
Long, J., Wang, Y., Wei, X., Ding, Z., Qi, Q., Xie, F., Qian,
Z., and Huang, W. (2021). Entity-centric fully con-
nected GCN for relation classification. Applied Sci-
ences, 11(4):1377.
Moon, C., Jones, P., and Samatova, N. F. (2017). Learn-
ing entity type embeddings for knowledge graph com-
pletion. In Proceedings of the 2017 ACM on con-
ference on information and knowledge management,
pages 2215–2218.
Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-
way model for collective learning on multi-relational
data. In Proceedings of the 28th International Confer-
ence on International Conference on Machine Learn-
ing, ICML, page 809–816.
Pan, W., Wei, W., and Mao, X.-L. (2021). Context-aware
entity typing in knowledge graphs. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 2240–2250.
Paulheim, H. and F
¨
umkranz, J. (2012). Unsupervised gen-
eration of data mining features from linked open data.
In Proceedings of the 2nd International Conference
on Web Intelligence, Mining and Semantics.
Riaz, A., Abdollahi, S., and Gottschalk, S. (2023). Entity
typing with triples using language models. In The
Semantic Web: ESWC 2023 Satellite Events - Her-
sonissos, Crete, Greece, Proceedings, volume 13998
of Lecture Notes in Computer Science, pages 169–
173. Springer.
Ristoski, P., De Vries, G. K. D., and Paulheim, H. (2016). A
collection of benchmark datasets for systematic eval-
uations of machine learning on the semantic web. In
The Semantic Web–ISWC 2016: 15th International
Semantic Web Conference, Kobe, Japan, October 17–
21, 2016, Proceedings, Part II 15.
Ristoski, P. and Paulheim, H. (2016). Rdf2vec: Rdf graph
embeddings for data mining. In The Semantic Web –
ISWC 2016. Springer International Publishing.
Ristoski, P., Rosati, J., Di Noia, T., De Leone, R., and Paul-
heim, H. (2019). Rdf2vec: Rdf graph embeddings and
their applications. Semantic Web, 10(4):721–752.
Markov Process-Based Graph Convolutional Networks for Entity Classification in Knowledge Graphs
439