
combat Zika and its consequences, ensuring interven-
tions are based on current and accurate data.
ACKNOWLEDGMENTS
The authors would like to thank the National Coun-
cil for Scientific and Technological Development of
Brazil (CNPq – Code: 311573/2022-3), the Co-
ordination for the Improvement of Higher Educa-
tion Personnel - Brazil (CAPES - Grant PROAP
88887.842889/2023-00 - PUC/MG, Grant PDPG
88887.708960/2022-00 - PUC/MG - Informatics and
Finance Code 001), the Foundation for Research
Support of Minas Gerais State (FAPEMIG – Codes:
APQ-03076-18 and APQ-05058-23).
REFERENCES
Akinyelu, A. A. (2020). Bio-inspired technique for improv-
ing machine learning speed and big data processing.
In 2020 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8.
Anwar, I. M., Salama, K. M., and Abdelbar, A. M. (2015).
Instance selection with ant colony optimization. Pro-
cedia Computer Science.
Badawy, M., Ramadan, N., and Hefny, H. (2023). Health-
care predictive analytics using machine learning and
deep learning techniques: a survey. J. of Electric. Syst.
and Inform. Techno., 10.
Boeuf, P., Drummer, H., Richards, J., Scoullar, M., and
Beeson, J. (2016). The global threat of zika virus
to pregnancy: Epidemiology, clinical perspectives,
mechanisms, and impact. BMC Medicine, 14(1).
Brasil, da Sa
´
ude, M., and de Vigil
ˆ
ancia em Sa
´
ude, S.
(2015). Protocolo de vigil
ˆ
ancia e resposta
`
a ocorr
ˆ
encia
de microcefalia e/ou alterac¸
˜
oes do sistema nervoso
central (snc):.
Brasil, da Sa
´
ude, M., and de Vigil
ˆ
ancia em Sa
´
ude, S.
(2017). Orientac¸
˜
oes integradas de vigil
ˆ
ancia e atenc¸
˜
ao
`
a sa
´
ude no
ˆ
ambito da emerg
ˆ
encia de sa
´
ude p
´
ublica de
import
ˆ
ancia nacional.
Carlin, S. and Curran, K. (2012). Cloud computing tech-
nologies. International Journal of Cloud Computing
and Services Science (IJ-CLOSER), 1.
Carvalho, I., Alencar, P., Andrade, M., Silva, P., Carvalho,
E., Ara
´
ujo, L., Cavalcante, M., and Sousa, F. (2019).
Clinical and x-ray oral evaluation in patients with con-
genital Zika Virus. Journal of applied oral science :
revista FOB, 27:e20180276–e20180276.
Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony
optimization. IEEE computational intelligence maga-
zine, 1(4):28–39.
Evans-Gilbert, T. (2020). Vertically transmitted chikun-
gunya, zika and dengue virus infections: The patho-
genesis from mother to fetus and the implications
of co-infections and vaccine development. Interna-
tional Journal of Pediatrics and Adolescent Medicine,
7(3):107–111.
Hartinger, S. M., Yglesias-Gonz
´
alez, M., Blanco-
Villafuerte, L., Palmeiro-Silva, Y. K., Lescano, A. G.,
Stewart-Ibarra, A., Rojas-Rueda, D., Melo, O., Taka-
hashi, B., Buss, D., Callaghan, M., Chesini, F., Flores,
E. C., Posse, C. G., Gouveia, N., Jankin, S., Miranda-
Chacon, Z., Mohajeri, N., Helo, J., and Ortiz, L.
(2023). The 2022 south america report of the lancet
countdown on health and climate change: trust the sci-
ence. now that we know, we must act. The Lancet
Regional Health - Americas, 20:100470–100470.
Hastings, A. K., Hastings, K., Uraki, R., Hwang, J.,
Gaitsch, H., Dhaliwal, K., Williamson, E., and Fikrig,
E. (2019). Loss of the TAM Receptor Axl Ameliorates
Severe Zika Virus Pathogenesis and Reduces Apopto-
sis in Microglia. iScience, 13:339–350.
Hott, H. A. C. F., Jandre, C., Xavier, P., Miloud-Aouidate,
A., Miranda, D., Song, M., Z
´
arate, L. E., and Nobre,
C. (2022). Selection of representative instances using
ant colony: A case study in a database of children and
adolescents with attention-deficit/hyperactivity disor-
der. In International Conference on Health Informat-
ics.
Lowe, R., Barcellos, C., Brasil, P., Cruz, O., Honorio, N.,
Kuper, H., and Carvalho, M. (2018). The zika virus
epidemic in brazil: From discovery to future impli-
cations. International Journal of Environmental Re-
search and Public Health, 15:96.
Miloud-Aouidate, A. and Baba-Ali, A. (2015). An efficient
ant colony instance selection algorithm for knn classi-
fication. International Journal of Applied Metaheuris-
tic Computing, 4:47–64.
Papadimitriou, C. H. and Steiglitz, K. (1982). Com-
binatorial optimization: algorithms and complexity.
Prentice-Hall, Inc., USA.
Prata-Barbosa, A. M., Melo, M., Guastavino, A. B., and
Cunha, A. J. L. A. d. (2019). Effects of Zika infection
on growth,. Jornal de Pediatria, 95:S30 – S41.
Ribeiro, I. G. and et al (2018). Microcefalia no Piau
´
ı, Brasil:
estudo descritivo durante a epidemia do v
´
ırus Zika,
2015-2016. Epidemiologia e Servic¸o de Sa
´
ude.
Salama, K. M., Abdelbar, A. M., and Anwar, I. M. (2016).
Data reduction for classification with ant colony algo-
rithms. Intelligent data analysis, 20(5):1021–1059.
Tsai, C.-F., Sue, K.-L., Hu, Y.-H., and Chiu, A. (2021).
Combining feature selection, instance selection, and
ensemble classification techniques for improved fi-
nancial distress prediction. J. Bus. Res.
Zanluca, C., Melo, V., Mosimann, A., Santos, G., Santos,
C., and Luz, K. (2015). First report of autochthonous
transmission of zika virus in brazil. Memorias do In-
stituto Oswaldo Cruz, 110.
HEALTHINF 2025 - 18th International Conference on Health Informatics
594