
IEEE Engineering in Medicine & Biology Society
(EMBC), pages 4138–4142.
Dabbaghian, A., Yousefi, T., Fatmi, S. Z., Shafia, P., and
Kassiri, H. (2019). A 9.2-g fully-flexible wireless
ambulatory eeg monitoring and diagnostics headband
with analog motion artifact detection and compensa-
tion. IEEE Transactions on Biomedical Circuits and
Systems, 13(6):1141–1151.
Doshi, R., Sankar, A. R., Nagaraj, K., Vazhayil, V., Nagaraj,
C., and Rao, M. (2021). Eeg driven autonomous in-
jection system for an epileptic neuroimaging applica-
tion. In 2021 43rd Annual International Conference of
the IEEE Engineering in Medicine & Biology Society
(EMBC), pages 1480–1486.
Elhosary, H., Zakhari, M. H., Elgammal, M. A., Abd
El Ghany, M. A., Salama, K. N., and Mostafa, H.
(2019). Low-power hardware implementation of a
support vector machine training and classification
for neural seizure detection. IEEE Transactions on
Biomedical Circuits and Systems, 13(6):1324–1337.
Faisal, A. I., Mondal, T., Cowan, D., and Deen, M. J.
(2022). Characterization of knee and gait features
from a wearable tele-health monitoring system. IEEE
Sensors Journal, 22(6):4741–4753.
Imtiaz, S. A., Iranmanesh, S., and Rodriguez-Villegas, E.
(2019). A low power system with eeg data reduction
for long-term epileptic seizures monitoring. IEEE Ac-
cess, 7:71195–71208.
Jiang, W., Majumder, S., Kumar, S., Subramaniam, S., Li,
X., Khedri, R., Mondal, T., Abolghasemian, M., Sa-
tia, I., and Deen, M. J. (2022). A wearable tele-health
system towards monitoring covid-19 and chronic dis-
eases. IEEE Reviews in Biomedical Engineering,
15:61–84.
Luo, X., Liu, D., Huai, S., Kong, H., Chen, H., and Liu, W.
(2022). Designing efficient dnns via hardware-aware
neural architecture search and beyond. IEEE Trans-
actions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 41(6):1799–1812.
Ma, C., Wang, Z., Zhao, L., Long, X., Vullings, R., Aarts,
R. M., Li, J., and Liu, C. (2023). Deep learning-based
signal quality assessment in wearable ecg monitoring.
In 2023 Computing in Cardiology (CinC), volume 50,
pages 1–4.
Mamaghanian, H., Khaled, N., Atienza, D., and Van-
dergheynst, P. (2011). Compressed sensing for real-
time energy-efficient ecg compression on wireless
body sensor nodes. IEEE Transactions on Biomedi-
cal Engineering, 58(9):2456–2466.
Mart
´
ınez, S., Veirano, F., Constandinou, T. G., and Silveira,
F. (2023). Trends in volumetric-energy efficiency of
implantable neurostimulators: A review from a cir-
cuits and systems perspective. IEEE Transactions on
Biomedical Circuits and Systems, 17(1):2–20.
Molloy, A., Beaumont, K., Alyami, A., Kirimi, M., Hoare,
D., Mirzai, N., Heidari, H., Mitra, S., Neale, S. L.,
and Mercer, J. R. (2022). Challenges to the develop-
ment of the next generation of self-reporting cardio-
vascular implantable medical devices. IEEE Reviews
in Biomedical Engineering, 15:260–272.
Nandi, P. and Rao, M. (2022). A novel cnn-lstm model
based non-invasive cuff-less blood pressure estimation
system. In 2022 44th Annual International Confer-
ence of the IEEE Engineering in Medicine & Biology
Society (EMBC), pages 832–836.
Nia, A. M., Mozaffari-Kermani, M., Sur-Kolay, S., Raghu-
nathan, A., and Jha, N. K. (2015). Energy-efficient
long-term continuous personal health monitoring.
IEEE Transactions on Multi-Scale Computing Sys-
tems, 1(2):85–98.
Nwibor, C., Haxha, S., Ali, M. M., Sakel, M., Haxha, A. R.,
Saunders, K., and Nabakooza, S. (2023). Remote
health monitoring system for the estimation of blood
pressure, heart rate, and blood oxygen saturation level.
IEEE Sensors Journal, 23(5):5401–5411.
Ozkan, H., Ozhan, O., Karadana, Y., Gulcu, M., Macit, S.,
and Husain, F. (2020). A portable wearable tele-ecg
monitoring system. IEEE Transactions on Instrumen-
tation and Measurement, 69(1):173–182.
Penhaker, M. (2022). Biomedical engineering in the 21st
century and in the future. In 2022 IEEE 20th Jubilee
World Symposium on Applied Machine Intelligence
and Informatics (SAMI), pages 000011–000012.
Qaisar, S., Bilal, R. M., Iqbal, W., Naureen, M., and Lee,
S. (2013). Compressive sensing: From theory to ap-
plications, a survey. Journal of Communications and
Networks, 15(5):443–456.
Rudelson, M. and Vershynin, R. (2006). Sparse reconstruc-
tion by convex relaxation: Fourier and gaussian mea-
surements. In 2006 40th Annual Conference on Infor-
mation Sciences and Systems, pages 207–212.
Setiadi, D. R. I. M. (2021). Psnr vs ssim: imperceptibility
quality assessment for image steganography. Multi-
media Tools and Applications, 80:8423–8444.
Shaikh, M. R., Rao, M., and Subramaniam, G. (2023). A
novel thermal imaging based transfer-learning model
to estimate blood pressure. In 2023 IEEE 20th Inter-
national Symposium on Biomedical Imaging (ISBI),
pages 1–5.
Shoaib, M., Lee, K. H., Jha, N. K., and Verma, N. (2014).
A 0.6–107 µw energy-scalable processor for directly
analyzing compressively-sensed eeg. IEEE Trans-
actions on Circuits and Systems I: Regular Papers,
61(4):1105–1118.
Span
`
o, E., Di Pascoli, S., and Iannaccone, G. (2016). Low-
power wearable ecg monitoring system for multiple-
patient remote monitoring. IEEE Sensors Journal,
16(13):5452–5462.
Wu, D., Li, S., Yang, J., and Sawan, M. (2022a). neuro2vec:
Masked fourier spectrum prediction for neurophysio-
logical representation learning.
Wu, D., Yang, J., and Sawan, M. (2022b). Bridging the
gap between patient-specific and patient-independent
seizure prediction via knowledge distillation. Journal
of Neural Engineering, 19(3):036035.
Xue, J.-H. and Titterington, D. M. (2011). t -tests, f -
tests and otsu’s methods for image thresholding. IEEE
Transactions on Image Processing, 20(8):2392–2396.
HEALTHINF 2025 - 18th International Conference on Health Informatics
610