
REFERENCES
Bullmore, E. T. and Bassett, D. S. (2011). Brain graphs:
Graphical models of the human brain connectome.
7:113–140.
Cai, H., Gao, Y., and Liu, M. (2023). Graph Trans-
former Geometric Learning of Brain Networks Us-
ing Multimodal MR Images for Brain Age Estimation.
42(2):456–466.
Cheng, J., Liu, Z., Guan, H., Wu, Z., Zhu, H., Jiang, J.,
Wen, W., Tao, D., and Liu, T. (2021). Brain Age
Estimation From MRI Using Cascade Networks With
Ranking Loss. 40(12):3400–3412.
Cole, J. H., Poudel, R. P. K., Tsagkrasoulis, D., Caan, M.
W. A., Steves, C., Spector, T. D., and Montana, G.
(2017). Predicting brain age with deep learning from
raw imaging data results in a reliable and heritable
biomarker. 163:115–124.
Coupeau, P., Fasquel, J. B., Mazerand, E., Menei, P.,
Montero-Menei, C. N., and Dinomais, M. (2022).
Patch-based 3D U-Net and transfer learning for
longitudinal piglet brain segmentation on MRI.
214:106563.
Cui, H., Dai, W., Zhu, Y., Li, X., He, L., and Yang, C.
(2021). BrainNNExplainer: An Interpretable Graph
Neural Network Framework for Brain Network based
Disease Analysis.
De Vico Fallani, F., Latora, V., and Chavez, M. (2017).
A Topological Criterion for Filtering Information in
Complex Brain Networks. 13(1):e1005305.
Ella, A., Delgadillo, J. A., Chemineau, P., and Keller, M.
(2017). Computation of a high-resolution MRI 3D
stereotaxic atlas of the sheep brain. 525(3):676–692.
Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J.,
Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings,
D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S.,
Miller, J. V., Pieper, S., and Kikinis, R. (2012). 3D
Slicer as an Image Computing Platform for the Quan-
titative Imaging Network. 30(9):1323–1341.
Fil, J. E., Joung, S., Zimmerman, B. J., Sutton, B. P., and
Dilger, R. N. (2021). High-resolution magnetic res-
onance imaging-based atlases for the young and ado-
lescent domesticated pig (Sus scrofa). 354:109107.
Galisot, G., Ramel, J.-Y., Brouard, T., Chaillou, E., and Ser-
res, B. (2022). Visual and structural feature combi-
nation in an interactive machine learning system for
medical image segmentation. 8:100294.
Gonzalez, R. C. and Woods, R. E. (2017). Digital Image
Processing. Pearson, fourth edition, global edition
edition.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Resid-
ual Learning for Image Recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 770–778.
Jiang, H., Lu, N., Chen, K., Yao, L., Li, K., Zhang, J.,
and Guo, X. (2020). Predicting Brain Age of Healthy
Adults Based on Structural MRI Parcellation Using
Convolutional Neural Networks. 10.
Kaur, P. and Gaba, G. S. (2021). Computational Neuro-
science Models and Tools: A Review. In Bhoi, A. K.,
Mallick, P. K., Liu, C.-M., and Balas, V. E., editors,
Bio-Inspired Neurocomputing, Studies in Computa-
tional Intelligence, pages 403–417. Springer.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
ageNet Classification with Deep Convolutional Neu-
ral Networks. In Advances in Neural Information Pro-
cessing Systems, volume 25. Curran Associates, Inc.
Lam, P., Zhu, A. H., Gari, I. B., Jahanshad, N., and Thomp-
son, P. M. (2020). 3D Grid-Attention Networks for
Interpretable Age and Alzheimer’s Disease Prediction
from Structural MRI.
Li, G., Wang, L., Yap, P.-T., Wang, F., Wu, Z., Meng, Y.,
Dong, P., Kim, J., Shi, F., Rekik, I., Lin, W., and
Shen, D. (2019). Computational neuroanatomy of
baby brains: A review. 185:906–925.
Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang,
J., Scheinost, D., Staib, L. H., Ventola, P., and Duncan,
J. S. (2021). BrainGNN: Interpretable Brain Graph
Neural Network for fMRI Analysis. 74:102233.
Lim, H., Joo, Y., Ha, E., Song, Y., Yoon, S., and Shin, T.
(2024). Brain Age Prediction Using Multi-Hop Graph
Attention Combined with Convolutional Neural Net-
work. 11(3):265.
Nitzsche, B., Frey, S., Collins, L. D., Seeger, J., Lobsien,
D., Dreyer, A., Kirsten, H., Stoffel, M. H., Fonov,
V. S., and Boltze, J. (2015). A stereotaxic, population-
averaged T1w ovine brain atlas including cerebral
morphology and tissue volumes. 9.
Park, H.-J. and Friston, K. (2013). Structural and Func-
tional Brain Networks: From Connections to Cogni-
tion. 342(6158):1238411.
Poriya, V. (2023). Brain Tumor Classification And Segmen-
tation Using Machine Learning For Magnetic Reso-
nance Images.
Ravinder, M., Saluja, G., Allabun, S., Alqahtani, M. S., Ab-
bas, M., Othman, M., and Soufiene, B. O. (2023). En-
hanced brain tumor classification using graph convo-
lutional neural network architecture. 13(1):14938.
Schmid, S. (2023). Image Intensity Normalization in Med-
ical Imaging.
Sporns, O. (2007). Brain connectivity. 2(10):4695.
Sporns, O. (2018). Graph theory methods: Applications in
brain networks. 20(2):111–121.
Srinivasan, S., Francis, D., Mathivanan, S. K., Rajadurai,
H., Shivahare, B. D., and Shah, M. A. (2024). A hy-
brid deep CNN model for brain tumor image multi-
classification. 24(1):21.
Van Essen, D. C. and Drury, H. A. (1997). Structural and
Functional Analyses of Human Cerebral Cortex Using
a Surface-Based Atlas. 17(18):7079–7102.
Yang, G., Zhou, S., Bozek, J., Dong, H.-M., Han, M., Zuo,
X.-N., Liu, H., and Gao, J.-H. (2020). Sample sizes
and population differences in brain template construc-
tion. 206:116318.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
482