
Applications of Computer Vision, pages 3812–3822.
Kingra, S., Aggarwal, N., and Kaur, N. (2023). Siamnet:
Exploiting source camera noise discrepancies using
siamese network for deepfake detection. Information
Sciences, page 119341.
Kou, S., Yin, X., Wang, Y., Chen, S., Chen, T., and Wu,
Z. (2023). Structure-aware subspace clustering. IEEE
Transactions on Knowledge and Data Engineering.
Lewis, J. K., Toubal, I. E., Chen, H., Sandesera, V., Lom-
nitz, M., Hampel-Arias, Z., Prasad, C., and Palaniap-
pan, K. (2020). Deepfake video detection based on
spatial, spectral, and temporal inconsistencies using
multimodal deep learning. In 2020 IEEE Applied Im-
agery Pattern Recognition Workshop (AIPR), pages 1–
9. IEEE.
Li, T., Wang, Y., Liu, L., Chen, L., and Chen, C. P. (2023).
Subspace-based minority oversampling for imbalance
classification. Information Sciences, 621:371–388.
Li, Y., Yang, X., Sun, P., Qi, H., and Lyu, S. (2020).
Celeb-df: A large-scale challenging dataset for deep-
fake forensics. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 3207–3216.
Liz-Lopez, H., Keita, M., Taleb-Ahmed, A., Hadid, A.,
Huertas-Tato, J., and Camacho, D. (2024). Genera-
tion and detection of manipulated multimodal audio-
visual content: Advances, trends and open challenges.
Information Fusion, 103:102103.
Lu, W., Liu, L., Zhang, B., Luo, J., Zhao, X., Zhou, Y., and
Huang, J. (2023). Detection of deepfake videos using
long-distance attention. IEEE Transactions on Neural
Networks and Learning Systems.
Miao, C., Chu, Q., Li, W., Li, S., Tan, Z., Zhuang, W., and
Yu, N. (2021). Learning forgery region-aware and id-
independent features for face manipulation detection.
IEEE Transactions on Biometrics, Behavior, and Iden-
tity Science, 4(1):71–84.
Mohiuddin, S., Ganguly, S., Malakar, S., Kaplun, D., and
Sarkar, R. (2021). A feature fusion based deep learn-
ing model for deepfake video detection. In Interna-
tional conference on mathematics and its applications
in new computer systems, pages 197–206. Springer.
Mohiuddin, S., Malakar, S., Kumar, M., and Sarkar, R.
(2023a). A comprehensive survey on state-of-the-art
video forgery detection techniques. Multimedia Tools
and Applications, pages 1–41.
Mohiuddin, S., Sheikh, K. H., Malakar, S., Vel
´
asquez, J. D.,
and Sarkar, R. (2023b). A hierarchical feature se-
lection strategy for deepfake video detection. Neural
Computing and Applications, 35(13):9363–9380.
Naskar, G., Mohiuddin, S., Malakar, S., Cuevas, E., and
Sarkar, R. (2024). Deepfake detection using deep fea-
ture stacking and meta-learning. Heliyon.
Nguyen, D., Mejri, N., Singh, I. P., Kuleshova, P., Astrid,
M., Kacem, A., Ghorbel, E., and Aouada, D. (2024).
Laa-net: Localized artifact attention network for
high-quality deepfakes detection. arXiv preprint
arXiv:2401.13856.
Qian, Y., Yin, G., Sheng, L., Chen, Z., and Shao, J. (2020).
Thinking in frequency: Face forgery detection by min-
ing frequency-aware clues. In European conference
on computer vision, pages 86–103. Springer.
Raza, M. A. and Malik, K. M. (2023). Multimodaltrace:
Deepfake detection using audiovisual representation
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
993–1000.
Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies,
J., and Nießner, M. (2019). Faceforensics++: Learn-
ing to detect manipulated facial images. In Proceed-
ings of the IEEE/CVF international conference on
computer vision, pages 1–11.
Sahib, I. and AlAsady, T. A. A. (2022). Deep fake image
detection based on modified minimized xception net
and densenet. In 2022 5th International Conference
on Engineering Technology and its Applications (IIC-
ETA), pages 355–360. IEEE.
Srirangarajan, S. et al. (2022). Locality-aware discrimina-
tive subspace learning for image classification. IEEE
Transactions on Instrumentation and Measurement,
71:1–14.
Tolosana, R., Romero-Tapiador, S., Fierrez, J., and Vera-
Rodriguez, R. (2021). Deepfakes evolution: Analy-
sis of facial regions and fake detection performance.
In international conference on pattern recognition,
pages 442–456. Springer.
Wang, T., Cheng, H., Chow, K. P., and Nie, L. (2023). Deep
convolutional pooling transformer for deepfake detec-
tion. ACM Transactions on Multimedia Computing,
Communications and Applications, 19(6):1–20.
Wang, T. and Chow, K. P. (2023). Noise based deepfake
detection via multi-head relative-interaction. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pages 14548–14556.
Xia, R., Liu, D., Li, J., Yuan, L., Wang, N., and Gao,
X. (2024). Mmnet: Multi-collaboration and multi-
supervision network for sequential deepfake detec-
tion. IEEE Transactions on Information Forensics and
Security.
Yin, W., Ma, Z., and Liu, Q. (2023). Discriminative sub-
space learning via optimization on riemannian mani-
fold. Pattern Recognition, 139:109450.
Yu, C.-M., Chen, K.-C., Chang, C.-T., and Ti, Y.-W.
(2022). Segnet: a network for detecting deepfake fa-
cial videos. Multimedia Systems, 28(3):793–814.
Yu, Y., Liu, X., Ni, R., Yang, S., Zhao, Y., and Kot, A. C.
(2023). Pvass-mdd: predictive visual-audio alignment
self-supervision for multimodal deepfake detection.
IEEE Transactions on Circuits and Systems for Video
Technology.
Zhang, D., Wu, P., Li, F., Zhu, W., and Sheng, V. S.
(2022). Cascaded-hop for deepfake videos detection.
KSII Transactions on Internet & Information Systems,
16(5).
Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., and
Yu, N. (2021). Multi-attentional deepfake detection.
In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 2185–
2194.
Zhou, C., Zhong, F., and
¨
Oztireli, C. (2023). Clip-pae:
Projection-augmentation embedding to extract rele-
vant features for a disentangled, interpretable and con-
trollable text-guided face manipulation. In ACM SIG-
GRAPH 2023 Conference Proceedings, pages 1–9.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
172