
quality of life: Open challenges based on a system-
atic literature mapping. In Proceedings of the 15th
International Joint Conference on Biomedical Engi-
neering Systems and Technologies, Online Streaming.
INSTICC, SCITEPRESS - Science and Technology
Publications.
Oliveira, P. A. M., Andrade, R. M. C., Neto, P. S. N., and
Oliveira, B. S. (2022c). Towards an ioht platform to
monitor qol indicators. In Proceedings of the 15th
International Joint Conference on Biomedical Engi-
neering Systems and Technologies, pages 438–445,
Online Streaming. INSTICC, SCITEPRESS - Science
and Technology Publications.
Orley, J. and Kuyken, W. (1994). The development of
the world health organization quality of life assess-
ment instrument (the whoqol). In Quality of life as-
sessment: International perspectives, pages 41–57.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Pappot, H., Taarnhøj, G. A., Elsbernd, A., Hjerming, M.,
Hanghøj, S., Jensen, M., Boisen, K. A., et al. (2019).
Health-related quality of life before and after use of a
smartphone app for adolescents and young adults with
cancer: pre-post interventional study. JMIR mHealth
and uHealth, 7(10):e13829.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Peimankar, A., Winther, T. S., Ebrahimi, A., and Wiil,
U. K. (2023). A machine learning approach for walk-
ing classification in elderly people with gait disorders.
Sensors, 23(2):679.
Qi, M., Li, P., Moyle, W., Weeks, B., and Jones, C. (2020).
Physical activity, health-related quality of life, and
stress among the chinese adult population during the
covid-19 pandemic. International journal of environ-
mental research and public health, 17(18):6494.
Rabin, R. and Charro, F. d. (2001). Eq-sd: a measure
of health status from the euroqol group. Annals of
medicine, 33(5):337–343.
Raghunath, K. M. K. (2024). Comprehensive patient-health
monitoring dataset. IEEE Dataport.
Ratmana, D. O., Fajar Shidik, G., Fanani, A. Z., Muljono,
and Pramunendar, R. A. (2020). Evaluation of Feature
Selections on Movie Reviews Sentiment. In 2020 In-
ternational Seminar on Application for Technology of
Information and Communication (iSemantic), pages
567–571, Semarang, Indonesia. IEEE.
Ravens-Sieberer, U., Gosch, A., Rajmil, L., Erhart, M.,
Bruil, J., Duer, W., Auquier, P., Power, M., Abel,
T., Czemy, L., et al. (2005). Kidscreen-52 quality-
of-life measure for children and adolescents. Expert
review of pharmacoeconomics & outcomes research,
5(3):353–364.
Robbins, T. D., Keung, S. N. L. C., and Arvanitis, T. N.
(2018). E-health for active ageing; a systematic re-
view. Maturitas, 114:34–40.
Rodrigues, J. J., Segundo, D. B. D. R., Junqueira, H. A.,
Sabino, M. H., Prince, R. M., Al-Muhtadi, J., and
De Albuquerque, V. H. C. (2018). Enabling tech-
nologies for the internet of health things. Ieee Access,
6:13129–13141.
Sanchez, W., Martinez, A., Campos, W., Estrada, H., and
Pelechano, V. (2015). Inferring loneliness levels in
older adults from smartphones. Journal of Ambient
Intelligence and Smart Environments, 7(1):85–98.
Schneider, J., Seidel, S., Basalla, M., and vom Brocke, J.
(2023). Reuse, reduce, support: design principles for
green data mining. Business & Information Systems
Engineering, 65(1):65–83.
Schober, P., Boer, C., and Schwarte, L. A. (2018). Corre-
lation coefficients: appropriate use and interpretation.
Anesthesia & analgesia, 126(5):1763–1768.
Sinha, M. K. (2023). Dataset for heart rate variability and
pulse rate variability analysis. Havard Dataverse.
Skevington, S. M., Lotfy, M., and O’Connell, K. A. (2004).
The world health organization’s whoqol-bref quality
of life assessment: psychometric properties and re-
sults of the international field trial. a report from the
whoqol group. Quality of life Research, 13:299–310.
Sundmaeker, H., GUILLEMIN, P., FRIESS, P., and
WOELFFL
´
E, S. (2020). Vision and challenges for re-
alising the internet of things.
Ware Jr, J. E. (1999). Sf-36 health survey.
WHO (2016). The global strategy and action plan on age-
ing and health 2016–2020: towards a world in which
everyone can live a long and healthy life. Sixty-ninth
World Health Assembly, Geneva, pages 23–28.
Wirth, R. and Hipp, J. (2000). Crisp-dm: Towards a stan-
dard process model for data mining. In Proceedings of
the 4th international conference on the practical ap-
plications of knowledge discovery and data mining,
volume 1, pages 29–39. Manchester.
Ying, X. (2019). An Overview of Overfitting and its
Solutions. Journal of Physics Conference Series,
1168:022022.
Zeadally, S., Siddiqui, F., Baig, Z., and Ibrahim, A. (2020).
Smart healthcare: Challenges and potential solutions
using internet of things (iot) and big data analytics.
PSU research review, 4(2):149–168.
HEALTHINF 2025 - 18th International Conference on Health Informatics
622