
ACKNOWLEDGEMENTS
The research was supported by the ITMO University,
project 623097 βDevelopment of libraries containing
perspective machine learning methodsβ.
REFERENCES
Dong, C., Loy, C. C., He, K., & Tang, X. (2014). Image
super-resolution using deep convolutional networks.
arXiv e-print. https://arxiv.org/abs/1501.00092
Dong, C., Loy, C. C., & Tang, X. (2016). Accelerating the
super-resolution convolutional neural network. arXiv e-
print. https://arxiv.org/abs/1608.00367
Shi, W., Caballero, J., HuszΓ‘r, F., Totz, J., Aitken, A. P.,
Bishop, R., Rueckert, D., & Wang, Z. (2016). Real-time
single image and video super-resolution using an
efficient sub-pixel convolutional neural network. arXiv
e-print. https://arxiv.org/abs/1609.05158
Ledig, C., Theis, L., HuszΓ‘r, F., Caballero, J., Cunningham,
A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,
Z., & Shi, W. (2016). Photo-realistic single image
super-resolution using a generative adversarial
network. arXiv e-print.
https://arxiv.org/abs/1609.04802
Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., & Huang, F.
(2020). Real-world super-resolution via kernel
estimation and noise injection. arXiv e-print.
https://arxiv.org/abs/2005.01996
Li, Y., Zhang, K., Timofte, R., Van Gool, L., & others.
(2022). NTIRE 2022 challenge on efficient super-
resolution: Methods and results. arXiv e-print.
https://arxiv.org/abs/2205.05675
Ren, B., Li, Y., Mehta, N., Timofte, R., & others. (2024).
The ninth NTIRE 2024 efficient super-resolution
challenge report. arXiv e-print.
https://arxiv.org/abs/2404.10343
Lim, B., Son, S., Kim, H., Nah, S., & Lee, K. M. (2017).
Enhanced deep residual networks for single image
super-resolution. arXiv e-print.
https://arxiv.org/abs/1707.02921
Yu, J., Fan, Y., Yang, J., Xu, N., Wang, Z., Wang, X., &
Huang, T. (2018). Wide activation for efficient and
accurate image super-resolution. arXiv e-print.
https://arxiv.org/abs/1808.08718
Ahn, N., Kang, B., & Sohn, K.-A. (2018). Fast, accurate,
and lightweight super-resolution with cascading
residual network. arXiv e-print.
https://arxiv.org/abs/1803.08664
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., & Fu, Y.
(2018). Image super-resolution using very deep residual
channel attention networks. arXiv e-print.
https://arxiv.org/abs/1807.02758
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Loy,
C. C., Qiao, Y., & Tang, X. (2018). ESRGAN:
Enhanced super-resolution generative adversarial
networks. arXiv e-print.
https://arxiv.org/abs/1809.00219
Zhang, K., Liang, J., Van Gool, L., & Timofte, R. (2021).
Designing a practical degradation model for deep blind
image super-resolution. arXiv e-print.
https://arxiv.org/abs/2103.14006
Wang, X., Xie, L., Dong, C., & Shan, Y. (2021). Real-
ESRGAN: Training real-world blind super-resolution
with pure synthetic data. arXiv e-print.
https://arxiv.org/abs/2107.10833
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., &
Timofte, R. (2021). SwinIR: Image restoration using
Swin transformer. arXiv e-print.
https://arxiv.org/abs/2108.10257
Zhou, Y., Li, Z., Guo, C.-L., Bai, S., Cheng, M.-M., & Hou,
Q. (2023). SRFormer: Permuted self-attention for
single image super-resolution. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision.
Zheng, M., Sun, L., Dong, J., & Pan, J. (2024). SMFANet:
A lightweight self-modulation feature aggregation
network for efficient image super-resolution. In
Proceedings of the European Conference on Computer
Vision (ECCV).
DeOldify. (n.d.). DeOldify homepage. GitHub.
https://github.com/jantic/DeOldify
Sun, L., Pan, J., & Zhu, Y. (2022). MobileSR: A mobile-
friendly transformer for efficient image super-
resolution. In Proceedings of the NTIRE 2022
Workshop on Image Super-Resolution.
Jiang, L., Dai, B., Wu, W., & Loy, C. C. (2020). Focal
frequency loss for image reconstruction and synthesis.
arXiv e-print. https://arxiv.org/abs/2012.12821
Jolicoeur-Martineau, A. (2018). The relativistic
discriminator: A key element missing from standard
GAN. arXiv e-print. https://arxiv.org/abs/1807.00734
Brykin, G. S. (2022). The System.AI project: Fully
managed cross-platform machine learning and data
analysis stack for .NET ecosystem. In Trudy Instituta
sistemnogo analiza Rossiyskoy akademii nauk (ISA
RAN) (Proceedings of the Institute for Systems Analysis
Russian Academy of Sciences (ISA RAS), pp. 64-72).
https://doi.org/10.14357/20790279230108
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
490