
iot-based complex scenario management through sit-
uation awareness and semantic approaches. J. Reliab.
Intell. Environ.
Colace, F., Conte, D., De Santo, M., Lombardi, M., San-
taniello, D., and Valentino, C. (2022). A content-
based recommendation approach based on singular
value decomposition. Connect. Sci., 34(1):2158 –
2176.
Colace, F., D’Arienzo, M. P., Lorusso, A., Lombardi, M.,
Santaniello, D., and Valentino, C. (2023). A novel
context aware paths recommendation approach for the
cultural heritage enhancement. In Proceedings - 2023
IEEE International Conference on Smart Computing,
SMARTCOMP 2023, page 273 – 278.
Colace, F., Lombardi, M., Pascale, F., and Santaniello, D.
(2018). A multi-level approach for forecasting critical
events in smart cities. In DMSVIVA 2018, page 31 –
35.
Cooper, G. F. and Herskovits, E. (1992). A bayesian method
for the induction of probabilistic networks from data.
Mach. Learn., 9(4):309 – 347.
Cramer, H., Evers, V., Ramlal, S., Van Someren, M., Rut-
ledge, L., Stash, N., Aroyo, L., and Wielinga, B.
(2008). The effects of transparency on trust in and
acceptance of a content-based art recommender. User
Model. User-Adapt. Interact., 18(5):455 – 496.
De Gemmis, M., Lops, P., Semeraro, G., and Basile, P.
(2008). Integrating tags in a semantic content-based
recommender. In RecSys’08, page 163 – 170.
Endsley, M. (1995). Toward a theory of situation awareness
in dynamic systems. Hum. Factors, 37(1):32 – 64.
Garc
´
ıa-Valldecabres, J., Galiano-Garrig
´
os, A., Meseguer,
L. C., and Gonz
´
alez, M. C. L. (2021). Hbim work
methodology applied to preventive maintenance: A
state-of-the-art review. In WIT Trans. Built Environ.,
volume 205, page 157 – 169.
Gunawan, E. S. and Lesmana, C. (2023). Developing 360
degree virtual tour of dharma rakhita temple as a cul-
tural learning source. In ICE-SMARTec 2023, page
151 – 154.
Gunawardana, A. and Shani, G. (2015). Evaluating recom-
mender systems. Springer New York, NY.
Hong, M., Jung, J. J., Piccialli, F., and Chianese, A. (2017).
Social recommendation service for cultural heritage.
Pers. Ubiquitous Comput., 21(2):191 – 201.
Jia, C., Cai, Y., Yu, Y. T., and Tse, T. (2016). 5w+1h pat-
tern: A perspective of systematic mapping studies and
a case study on cloud software testing. J. Syst. Softw.,
116:206 – 219.
Kokar, M. M., Matheus, C. J., and Baclawski, K. (2009).
Ontology-based situation awareness. Inf. Fusion,
10(1):83 – 98.
Koren, Y., Rendle, S., and Bell, R. (2022). Advances in
Collaborative Filtering. Springer New York, NY.
Michalakis, K. and Caridakis, G. (2022). Context awareness
in cultural heritage applications: A survey. J. Comput.
Cult. Herit., 15(2).
Mitro, N., Krommyda, M., and Amditis, A. (2022). Smart
tags: Iot sensors for monitoring the micro-climate of
cultural heritage monuments. Appl. Sci., 12(5).
Musto, C., de Gemmis, M., Lops, P., Narducci, F., and
Semeraro, G. (2022). Semantics and Content-Based
Recommendations. Springer New York, NY.
Nikolakopoulos, A. N., Ning, X., Desrosiers, C., and
Karypis, G. (2022). Trust Your Neighbors: A Compre-
hensive Survey of Neighborhood-Based Methods for
Recommender Systems. Springer New York, NY.
Podara, A., Giomelakis, D., Nicolaou, C., Matsiola, M., and
Kotsakis, R. (2021). Digital storytelling in cultural
heritage: Audience engagement in the interactive doc-
umentary new life. Sustainability, 13(3):1 – 22.
Rainio, O., Teuho, J., and Kl
´
en, R. (2024). Evaluation
metrics and statistical tests for machine learning. Sci.
Rep., 14(1).
Ricci, F., Rokach, L., and Shapira, B. (2022). Recommender
Systems: Techniques, Applications, and Challenges.
Springer New York, NY.
Ruotsalo, T., Haav, K., Stoyanov, A., Roche, S., Fani, E.,
Deliai, R., M
¨
akel
¨
a, E., Kauppinen, T., and Hyv
¨
onen,
E. (2013). Smartmuseum: A mobile recommender
system for the web of data. J. Web Semant., 20:50
– 67.
Scanagatta, M., Salmer
´
on, A., and Stella, F. (2019). A sur-
vey on bayesian network structure learning from data.
Prog. Artif. Intell., 8(4):425 – 439.
Selmanovi
´
c, E., Rizvic, S., Harvey, C., Boskovic, D., Hu-
lusic, V., Chahin, M., and Sljivo, S. (2020). Improv-
ing accessibility to intangible cultural heritage preser-
vation using virtual reality. J. Comput. Cult. Herit.,
13(2).
Su, X., Sperli, G., Moscato, V., Picariello, A., Esposito, C.,
and Choi, C. (2019). An edge intelligence empow-
ered recommender system enabling cultural heritage
applications. IEEE Trans. Ind. Inform., 15(7):4266 –
4275.
Valtolina, S., Mazzoleni, P., Franzoni, S., and Bertino, E.
(2006). A semantic approach to build personalized
interfaces in the cultural heritage domain. In Proceed-
ings of the Workshop on Advanced Visual Interfaces,
volume 2006, page 306 – 309.
Zhang, S., Tay, Y., Yao, L., Sun, A., and Zhang, C. (2022).
Deep Learning for Recommender Systems. Springer
New York, NY.
Improving Enjoyment of Cultural Heritage Through Recommender Systems, Virtual Tour, and Digital Storytelling
271