
grammatical precision, as English is our second lan-
guage. The authors are responsible for creating the
entire content and ensuring technical accuracy.
REFERENCES
Ainsworth, T. (2002). Buyer beware. Security Oz, 19:18–
26.
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. (2020). End-to-end object de-
tection with transformers. In European conference on
computer vision, pages 213–229. Springer.
Darker, I., Gale, A., Ward, L., and Blechko, A. (2007). Can
cctv reliably detect gun crime? In 2007 41st Annual
IEEE International Carnahan Conference on Security
Technology, pages 264–271. IEEE.
de Azevedo Kanehisa, R. F. and de Almeida Neto, A.
(2019). Firearm detection using convolutional neural
networks. In ICAART (2), pages 707–714.
Donald, F. M. and Donald, C. H. (2015). Task disengage-
ment and implications for vigilance performance in
cctv surveillance. Cognition, Technology & Work,
17(1):121–130.
Fang, Y., Sun, Q., Wang, X., Huang, T., Wang, X., and Cao,
Y. (2023). Eva-02: A visual representation for neon
genesis. arXiv preprint arXiv:2303.11331.
Gelana, F. and Yadav, A. (2019). Firearm detection from
surveillance cameras using image processing and ma-
chine learning techniques. In Smart innovations in
communication and computational sciences, pages
25–34. Springer.
Gius, M. (2018). The effects of state and federal gun control
laws on school shootings. Applied economics letters,
25(5):317–320.
Gonz
´
alez, J. L. S., Zaccaro, C.,
´
Alvarez-Garc
´
ıa, J. A., Mo-
rillo, L. M. S., and Caparrini, F. S. (2020). Real-time
gun detection in cctv: an open problem. Neural net-
works.
Grega, M., Lach, S., and Sieradzki, R. (2013). Automated
recognition of firearms in surveillance video. In Cog-
nitive Methods in Situation Awareness and Decision
Support (CogSIMA), 2013 IEEE International Multi-
Disciplinary Conference on, pages 45–50.
Gu, Y., Liao, X., and Qin, X. (2022). Youtube-gdd: A chal-
lenging gun detection dataset with rich contextual in-
formation. arXiv preprint arXiv:2203.04129.
Hnoohom, N., Chotivatunyu, P., and Jitpattanakul, A.
(2022). Acf: an armed cctv footage dataset for en-
hancing weapon detection. Sensors, 22(19):7158.
Hurka, S. and Knill, C. (2020). Does regulation matter? a
cross-national analysis of the impact of gun policies
on homicide and suicide rates. Regulation & Gover-
nance.
IMFDB (2015). Internet movie firearms database.
http://www.imfdb.org/index.php?title=Main
Page&
oldid=911151. Last accessed in 18/01/2021.
Ineneji, C. and Kusaf, M. (2019). Hybrid weapon detection
algorithm, using material test and fuzzy logic system.
Computers & Electrical Engineering, 78:437–448.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). YOLO by
Ultralytics.
Lang, S., Ventola, F., and Kersting, K. (2021). Dafne: A
one-stage anchor-free approach for oriented object de-
tection. arXiv e-prints, pages arXiv–2109.
Lemieux, F. (2014). Effect of gun culture and firearm
laws on gun violence and mass shootings in the united
states: A multi-level quantitative analysis. Interna-
tional Journal of Criminal Justice Sciences, 9(1):74.
Lim, J., Al Jobayer, M. I., Baskaran, V. M., Lim, J. M.,
Wong, K., and See, J. (2019). Gun detection in
surveillance videos using deep neural networks. In
2019 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA
ASC), pages 1998–2002. IEEE.
Loganathan, S., Kariyawasam, G., and Sumathipala, P.
(2019). Suspicious activity detection in surveillance
footage. In 2019 International Conference on Elec-
trical and Computing Technologies and Applications
(ICECTA), pages 1–4. IEEE.
Mehta, P., Kumar, A., and Bhattacharjee, S. (2020). Fire
and gun violence based anomaly detection system us-
ing deep neural networks. In 2020 International Con-
ference on Electronics and Sustainable Communica-
tion Systems (ICESC), pages 199–204. IEEE.
Olmos, R., Tabik, S., and Herrera, F. (2018). Automatic
handgun detection alarm in videos using deep learn-
ing. Neurocomputing, 275:66–72.
Pawar, M., Dhanki, M., Parkar, S., Dandekar, C., and Gupta,
B. (2019). A novel approach to detect crimes and as-
sist law enforcement agency using deep learning with
cctvs and drones.
Piza, E. L., Welsh, B. C., Farrington, D. P., and Thomas,
A. L. (2019). Cctv surveillance for crime preven-
tion: A 40-year systematic review with meta-analysis.
Criminology & Public Policy, 18(1):135–159.
Raturi, G., Rani, P., Madan, S., and Dosanjh, S. (2019).
Adocw: An automated method for detection of con-
cealed weapon. In 2019 Fifth International Confer-
ence on Image Information Processing (ICIIP), pages
181–186. IEEE.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91–99.
Sultani, W., Chen, C., and Shah, M. (2018). Real-world
anomaly detection in surveillance videos. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6479–6488.
Velastin, S. A., Boghossian, B. A., and Vicencio-Silva,
M. A. (2006). A motion-based image processing
system for detecting potentially dangerous situations
in underground railway stations. Transportation Re-
search Part C: Emerging Technologies, 14(2):96–113.
Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni,
L. M., and Shum, H.-Y. (2022). Dino: Detr with im-
proved denoising anchor boxes for end-to-end object
detection. arXiv preprint arXiv:2203.03605.
Zhou, Q., Li, X., He, L., Yang, Y., Cheng, G., Tong, Y., Ma,
L., and Tao, D. (2022). Transvod: end-to-end video
object detection with spatial-temporal transformers.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
690