
Bo
ˇ
zi
ˇ
c, J., Tabernik, D., and Sko
ˇ
caj, D. (2021a). End-to-end
training of a two-stage neural network for defect de-
tection. In International conference on pattern recog-
nition (ICPR). IEEE.
Bo
ˇ
zi
ˇ
c, J., Tabernik, D., and Sko
ˇ
caj, D. (2021b). Mixed su-
pervision for surface-defect detection: from weakly to
fully supervised learning. Computers in Industry.
Capogrosso, L., Girella, F., Taioli, F., Chiara, M., Aqeel,
M., Fummi, F., Setti, F., Cristani, M., et al. (2024).
Diffusion-based image generation for in-distribution
data augmentation in surface defect detection. In
International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Appli-
cations, volume 2, pages 409–416. SciTePress.
Chen, Y., Ding, Y., Zhao, F., Zhang, E., Wu, Z., and
Shao, L. (2021). Surface defect detection methods
for industrial products: A review. Applied Sciences,
11(16):7657.
De Vitis, G. A., Foglia, P., and Prete, C. A. (2020). Row-
level algorithm to improve real-time performance of
glass tube defect detection in the production phase.
IET Image Processing, 14(12):2911–2921.
Defard, T., Setkov, A., Loesch, A., and Audigier, R. (2021).
Padim: a patch distribution modeling framework for
anomaly detection and localization. In International
Conference on Pattern Recognition (ICPR).
Girella, F., Liu, Z., Fummi, F., Setti, F., Cristani, M., and
Capogrosso, L. (2024). Leveraging latent diffusion
models for training-free in-distribution data augmen-
tation for surface defect detection. In International
Conference on Content-based Multimedia Indexing
(CBMI).
Hu, M., Wang, Y., Feng, X., Zhou, S., Wu, Z., and Qin,
Y. (2022). Robust anomaly detection for time-series
data.
Jawahar, M., Anbarasi, L. J., and Geetha, S. (2023). Vision
based leather defect detection: a survey. Multimedia
Tools and Applications, 82(1):989–1015.
Luo, Z., He, K., and Yu, Z. (2022). A robust unsupervised
anomaly detection framework. Applied Intelligence,
52(6):6022–6036.
Ono, Y., Tsuji, A., Abe, J., Noguchi, H., and Abe, J. (2020).
Robust detection of surface anomaly using lidar point
cloud with intensity. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, 43:1129–1136.
Roth, K., Pemula, L., Zepeda, J., Sch
¨
olkopf, B., Brox, T.,
and Gehler, P. (2022). Towards total recall in indus-
trial anomaly detection. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).
Rousseeuw, P. J. and Hubert, M. (2018). Anomaly detection
by robust statistics. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 8(2):e1236.
Rudolph, M., Wandt, B., and Rosenhahn, B. (2021). Same
same but differnet: Semi-supervised defect detection
with normalizing flows. In IEEE/CVF Winter Confer-
ence on Applications of Computer Vision.
Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., and Pei, D.
(2019). Robust anomaly detection for multivariate
time series through stochastic recurrent neural net-
work. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.
Tian, R. and Jia, M. (2022). Dcc-centernet: A rapid detec-
tion method for steel surface defects. Measurement,
187:110211.
Vrochidou, E., Sidiropoulos, G. K., Ouzounis, A. G., Lam-
poglou, A., Tsimperidis, I., Papakostas, G. A., Sarafis,
I. T., Kalpakis, V., and Stamkos, A. (2022). Towards
robotic marble resin application: Crack detection on
marble using deep learning. Electronics, 11(20).
Zavrtanik, V., Kristan, M., and Sko
ˇ
caj, D. (2021). Draem-
a discriminatively trained reconstruction embedding
for surface anomaly detection. In IEEE/CVF Inter-
national Conference on Computer Vision (ICCV).
Zavrtanik, V., Kristan, M., and Sko
ˇ
caj, D. (2022). DSR–
a dual subspace re-projection network for surface
anomaly detection. In European Conference on Com-
puter Vision (ECCV).
Zhang, C., Wang, Z., Liu, B., Xiaolei, W., et al. (2022).
Steel plate defect recognition of deep neural network
recognition based on space-time constraints. Ad-
vances in Multimedia, 2022.
Zhang, S., Zhang, Q., Gu, J., Su, L., Li, K., and Pecht,
M. (2021). Visual inspection of steel surface defects
based on domain adaptation and adaptive convolu-
tional neural network. Mechanical Systems and Signal
Processing, 153:107541.
Zhao, Z., Birke, R., Han, R., Robu, B., Bouchenak, S.,
Mokhtar, S. B., and Chen, L. Y. (2019). Rad: On-line
anomaly detection for highly unreliable data. arXiv
preprint arXiv:1911.04383.
Zhou, C. and Paffenroth, R. C. (2017). Anomaly detection
with robust deep autoencoders. In ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining.
Self-Supervised Iterative Refinement for Anomaly Detection in Industrial Quality Control
183