
Kaydash, V., Kreslavsky, M., Shkuratov, Y., Gerasimenko,
S., Pinet, P., Josset, J.-L., Beauvivre, S., Foing,
B., et al. (2009). Photometric anomalies of the lu-
nar surface studied with smart-1 amie data. Icarus,
202(2):393–413.
Kaydash, V., Shkuratov, Y., Korokhin, V., and Videen, G.
(2011). Photometric anomalies in the apollo land-
ing sites as seen from the lunar reconnaissance orbiter.
Icarus, 211(1):89–96.
Kim, K. J., W
¨
ohler, C., Berezhnoy, A. A., Bhatt, M.,
and Grumpe, A. (2019). Prospective 3he-rich land-
ing sites on the moon. Planetary and Space Science,
177:104686.
Kramer, G. Y., Besse, S., Dhingra, D., Nettles, J., Klima,
R., Garrick-Bethell, I., Clark, R. N., Combe, J.-P.,
Head III, J. W., Taylor, L. A., et al. (2011). M3 spec-
tral analysis of lunar swirls and the link between opti-
cal maturation and surface hydroxyl formation at mag-
netic anomalies. Journal of Geophysical Research:
Planets, 116(E9).
Lee, Y. and Kang, P. (2022). Anovit: Unsuper-
vised anomaly detection and localization with vision
transformer-based encoder-decoder. IEEE Access,
10:46717–46724.
Lesnikowski, A., Bickel, V. T., and Angerhausen, D.
(2020). Unsupervised distribution learning for lu-
nar surface anomaly detection. arXiv preprint
arXiv:2001.04634.
Li, C.-L., Sohn, K., Yoon, J., and Pfister, T. (2021). Cut-
paste: Self-supervised learning for anomaly detection
and localization. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 9659–9669.
Li, S., Lucey, P. G., Milliken, R. E., Hayne, P. O., Fisher,
E., Williams, J.-P., Hurley, D. M., and Elphic, R. C.
(2018). Direct evidence of surface exposed water ice
in the lunar polar regions. Proceedings of the National
Academy of Sciences, 115(36):8907–8912.
Li, S. and Milliken, R. E. (2017). Water on the surface of the
Moon as seen by the Moon Mineralogy Mapper: Dis-
tribution, abundance, and origins. Science Advances,
3:e1701471.
Loveland, R. and Sime, R. (2024). Anomaly detection
methods for finding technosignatures. In ICPRAM,
pages 633–640.
Moseley, B., Bickel, V., Burelbach, J., and Relatores, N.
(2020). Unsupervised learning for thermophysical
analysis on the lunar surface. The Planetary Science
Journal, 1(2):32.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., K
¨
opf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep
learning library.
Pieters, C. M., Hanna, K. D., Cheek, L., Dhingra, D., Pris-
sel, T., Jackson, C., Moriarty, D., Parman, S., and Tay-
lor, L. A. (2014). The distribution of mg-spinel across
the moon and constraints on crustal origin. American
Mineralogist, 99(10):1893–1910.
Pinet, P. C., Shevchenko, V. V., Chevrel, S. D., Daydou,
Y., and Rosemberg, C. (2000). Local and regional lu-
nar regolith characteristics at reiner gamma formation:
Optical and spectroscopic properties from clementine
and earth-based data. Journal of Geophysical Re-
search: Planets, 105(E4):9457–9475.
Robinson, M., Brylow, S., Tschimmel, M., Humm, D.,
Lawrence, S., Thomas, P., Denevi, B., Bowman-
Cisneros, E., Zerr, J., Ravine, M., et al. (2010). Lu-
nar reconnaissance orbiter camera (lroc) instrument
overview. Space science reviews, 150(1):81–124.
Roth, K., Pemula, L., Zepeda, J., Scholkopf, B., Brox, T.,
and Gehler, P. (2022). Towards total recall in in-
dustrial anomaly detection. In 2022 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR). IEEE.
Rudolph, M., Wandt, B., and Rosenhahn, B. (2021). Same
same but differnet: Semi-supervised defect detection
with normalizing flows. In 2021 IEEE Winter Con-
ference on Applications of Computer Vision (WACV).
IEEE.
R
¨
usch, O. and Bickel, V. T. (2023). Global mapping of
fragmented rocks on the moon with a neural network:
Implications for the failure mode of rocks on airless
surfaces. The Planetary Science Journal, 4(7):126.
R
¨
usch, O., Hess, M., W
¨
ohler, C., Bickel, V. T., Marshal,
R. M., Patzek, M., and Huybrighs, H. L. F. (2024).
Discovery of a dust sorting process on boulders near
the reiner gamma swirl on the moon. Journal of Geo-
physical Research: Planets, 129(1).
Sakurada, M. and Yairi, T. (2014). Anomaly detection
using autoencoders with nonlinear dimensionality re-
duction. In Proceedings of the MLSDA 2014 2nd
Workshop on Machine Learning for Sensory Data
Analysis, MLSDA’14. ACM.
Schlegl, T., Seeb
¨
ock, P., Waldstein, S. M., Schmidt-Erfurth,
U., and Langs, G. (2017). Unsupervised Anomaly
Detection with Generative Adversarial Networks to
Guide Marker Discovery, pages 146–157. Springer
International Publishing.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2016). Grad-cam: Visual
explanations from deep networks via gradient-based
localization.
Speyerer, E. J., Wagner, R. V., Robinson, M. S., Humm,
D. C., Becker, K., Anderson, J., and Thomas, P.
(2012). In-flight geometric calibration of the lu-
nar reconnaissance orbiter camera. The International
Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XXXIX-B4:511–516.
Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic
attribution for deep networks.
Syal, M. B. and Schultz, P. H. (2015). Cometary impact
effects at the moon: Implications for lunar swirl for-
mation. Icarus, 257:194–206.
Tsunakawa, H., Takahashi, F., Shimizu, H., Shibuya, H.,
and Matsushima, M. (2015). Surface vector mapping
of magnetic anomalies over the moon using kaguya
and lunar prospector observations. Journal of Geo-
physical Research: Planets, 120(6):1160–1185.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
498