
Daliri, M. R. (2012). Automatic diagnosis of neuro-
degenerative diseases using gait dynamics. Measure-
ment, 45(7):1729–1734.
de Bruin, N., Schmitz, K., Schiffmann, S., Tafferner, N.,
Schmidt, M., Jordan, H., H
¨
außler, A., Tegeder, I.,
Geisslinger, G., and Parnham, M. (2016). Multiple
rodent models and behavioral measures reveal unex-
pected responses to fty720 and dmf in experimental
autoimmune encephalomyelitis. Behavioural brain
research, 300:160–174.
Edwards, L. and Veale, M. (2017). Slave to the algorithm?
why a’right to an explanation’is probably not the rem-
edy you are looking for. Duke L. & Tech. Rev., 16:18.
Guillot, T. S., Asress, S. A., Richardson, J. R., Glass, J. D.,
and Miller, G. W. (2008). Treadmill gait analysis does
not detect motor deficits in animal models of parkin-
son’s disease or amyotrophic lateral sclerosis. Journal
of motor behavior, 40(6):568–577.
Guyon, I. and Elisseeff, A. (2003). An introduction to vari-
able and feature selection. Journal of machine learn-
ing research, 3:1157–1182.
Hampton, T. G. and Amende, I. (2009). Treadmill gait anal-
ysis characterizes gait alterations in parkinson’s dis-
ease and amyotrophic lateral sclerosis mouse models.
Journal of motor behavior, 42(1):1–4.
Han, J. and Bhanu, B. (2005). Individual recognition using
gait energy image. In 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion (CVPR’05), volume 2, pages i–i. IEEE.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Ele-
ments of Statistical Learning: Data Mining, Inference,
and Prediction. Springer Science & Business Media.
Holzinger, A., Biemann, C., Pattichis, C. S., and Kell, D. B.
(2017a). What do we need to build explainable ai
systems for the medical domain? arXiv preprint
arXiv:1712.09923.
Holzinger, A., Malle, B., Kieseberg, P., Roth, P. M.,
M
¨
uller, H., Reihs, R., and Zatloukal, K. (2017b).
Towards the augmented pathologist: Challenges of
explainable-ai in digital pathology. arXiv preprint
arXiv:1712.06657.
Jun, K., Lee, Y., Lee, S., Lee, D. W., and Kim, M. S.
(2020). Pathological gait classification using kinect
v2 and gated recurrent neural networks. IEEE Access,
8:139881–139891.
Kour, N., Gupta, S., and Arora, S. (2020). Gait dataset
for knee osteoarthritis and parkinson’s disease anal-
ysis with severity levels.
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P.,
Tang, J., and Liu, H. (2017). Feature selection: A
data perspective. ACM Computing Surveys (CSUR),
50(6):1–45.
Lundberg, S. M. and Lee, S.-I. (2017). A unified approach
to interpreting model predictions. In Proceedings of
the 31st International Conference on Neural Infor-
mation Processing Systems (NIPS), pages 4765–4774.
Curran Associates Inc.
Machado, A. S., Darmohray, D. M., Fayad, J., Marques,
H. G., and Carey, M. R. (2015). A quantitative frame-
work for whole-body coordination reveals specific
deficits in freely walking ataxic mice. elife, 4:e07892.
Mannini, A., Trojaniello, D., Cereatti, A., and Sabatini,
A. M. (2016). A machine learning framework for gait
classification using inertial sensors: Application to el-
derly, post-stroke and huntington’s disease patients.
Sensors, 16(1):134.
Mead, R. J., Bennett, E. J., Kennerley, A. J., Sharp, P.,
Sunyach, C., Kasher, P., Berwick, J., Pettmann, B.,
Battaglia, G., Azzouz, M., et al. (2011). Optimised
and rapid pre-clinical screening in the sod1g93a trans-
genic mouse model of amyotrophic lateral sclerosis
(als). PloS one, 6(8):e23244.
Mehrizi, R., Peng, X., Zhang, S., Liao, R., and Li, K.
(2019). Automatic health problem detection from gait
videos using deep neural networks. arXiv preprint
arXiv:1906.01480.
Preisig, D. F., Kulic, L., Kr
¨
uger, M., Wirth, F., McAfoose,
J., Sp
¨
ani, C., Gantenbein, P., Derungs, R., Nitsch,
R. M., and Welt, T. (2016). High-speed video gait
analysis reveals early and characteristic locomotor
phenotypes in mouse models of neurodegenerative
movement disorders. Behavioural brain research,
311:340–353.
Raknim, P. and Lan, K.-c. (2016). Gait monitoring for
early neurological disorder detection using sensors in
a smartphone: Validation and a case study of parkin-
sonism. Telemedicine and e-Health, 22(1):75–81.
Schreiber, C. and Moissenet, F. (2019). A multimodal
dataset of human gait at different walking speeds es-
tablished on injury-free adult participants. Scientific
Data, 6(1):1–7.
Shumway-Cook, A. and Woollacott, M. H. (1995). The
dynamic gait index to quantify gait ability in patients
with vestibular and balance disorders. Physical ther-
apy, 75(6):538–548.
Talpalar, A. E., Bouvier, J., Borgius, L., Fortin, G., Pierani,
A., and Kiehn, O. (2013). Dual-mode operation of
neuronal networks involved in left–right alternation.
Nature, 500(7460):85–88.
Vilas-Boas, M. D. C., Rocha, A. P., Cardoso, M. N., Fer-
nandes, J. M., Coelho, T., and Cunha, J. P. S. (2021).
Supporting the assessment of hereditary transthyretin
amyloidosis patients based on 3-d gait analysis and
machine learning. IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering, 29:1350–1362.
Vinsant, S., Mansfield, C., Jimenez-Moreno, R., Moore,
V. D. G., Yoshikawa, M., Hampton, T. G., Prevette,
D., Caress, J., Oppenheim, R. W., and Milligan, C.
(2013). Characterization of early pathogenesis in the
sod1 g93a mouse model of als: part i, background and
methods. Brain and behavior, 3(4):335–350.
Wold, S., Esbensen, K., and Geladi, P. (1987). Principal
component analysis. Chemometrics and intelligent
laboratory systems, 2(1-3):37–52.
Wooley, C. M., Sher, R. B., Kale, A., Frankel, W. N., Cox,
G. A., and Seburn, K. L. (2005). Gait analysis detects
early changes in transgenic sod1 (g93a) mice. Muscle
& Nerve: Official Journal of the American Associa-
tion of Electrodiagnostic Medicine, 32(1):43–50.
Zhang, Y. and Ma, Y. (2019). Application of supervised
machine learning algorithms in the classification of
sagittal gait patterns of cerebral palsy children with
spastic diplegia. Computers in biology and medicine,
106:33–39.
HEALTHINF 2025 - 18th International Conference on Health Informatics
140