
Proceedings of the AAAI conference on artificial intel-
ligence, volume 33, pages 3363–3370.
Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D.
(2020). Electra: Pre-training text encoders as dis-
criminators rather than generators. arXiv preprint
arXiv:2003.10555.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
El Haji, H., Sbihi, N., Guermah, B., Souadka, A., and
Ghogho, M. (2024). Epidemiological breast cancer
prediction by country: A novel machine learning ap-
proach. PLOS ONE, 19(8):e0308905.
El Haji, H., Souadka, A., Patel, B. N., Sbihi, N., Ra-
masamy, G., Patel, B. K., Ghogho, M., and Banerjee,
I. (2023). Evolution of breast cancer recurrence risk
prediction: a systematic review of statistical and ma-
chine learning–based models. JCO Clinical Cancer
Informatics, 7:e2300049.
El Handri, K. and Idrissi, A. (2020). Parallelization of topk
algorithm through a new hybrid recommendation sys-
tem for big data in spark cloud computing framework.
IEEE Systems Journal, 15(4):4876–4886.
Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H.,
and He, Q. (2020). A survey on knowledge graph-
based recommender systems. IEEE Transactions on
Knowledge and Data Engineering, 34(8):3549–3568.
Hangya, V., Saadi, H. S., and Fraser, A. (2022). Improv-
ing low-resource languages in pre-trained multilingual
language models. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 11993–12006.
Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo,
G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L.,
Navigli, R., Neumaier, S., et al. (2021). Knowledge
graphs. ACM Computing Surveys (Csur), 54(4):1–37.
Huang, X., Zhang, J., Li, D., and Li, P. (2019). Knowledge
graph embedding based question answering. In Pro-
ceedings of the twelfth ACM international conference
on web search and data mining, pages 105–113.
Jiang, N. and de Marneffe, M.-C. (2021). He thinks he
knows better than the doctors: Bert for event factu-
ality fails on pragmatics. Transactions of the Associa-
tion for Computational Linguistics, 9:1081–1097.
Kejriwal, M. (2020). Knowledge graphs and covid-19: op-
portunities, challenges, and implementation. Harv.
Data Sci. Rev, 11:300.
Kilicoglu, H., Rosemblat, G., and Rindflesch, T. C. (2017).
Assigning factuality values to semantic relations ex-
tracted from biomedical research literature. PloS one,
12(7):e0179926.
Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., and
Rindflesch, T. C. (2012). Semmeddb: a pubmed-
scale repository of biomedical semantic predications.
Bioinformatics, 28(23):3158–3160.
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H.,
and Kang, J. (2020). Biobert: a pre-trained biomedi-
cal language representation model for biomedical text
mining. Bioinformatics, 36(4):1234–1240.
Li, P., Castelo, N., Katona, Z., and Sarvary, M. (2022). Lan-
guage models for automated market research: A new
way to generate perceptual maps. Available at SSRN
4241291.
Rossi, A., Barbosa, D., Firmani, D., Matinata, A., and Meri-
aldo, P. (2021). Knowledge graph embedding for link
prediction: A comparative analysis. ACM Transac-
tions on Knowledge Discovery from Data (TKDD),
15(2):1–49.
Soares, L. B., FitzGerald, N., Ling, J., and Kwiatkowski,
T. (2019). Matching the blanks: Distributional
similarity for relation learning. arXiv preprint
arXiv:1906.03158.
Sosa, D. N. and Altman, R. B. (2022). Contexts and contra-
dictions: a roadmap for computational drug repurpos-
ing with knowledge inference. Briefings in Bioinfor-
matics, 23(4):bbac268.
Stanovsky, G., Eckle-Kohler, J., Puzikov, Y., Dagan, I., and
Gurevych, I. (2017). Integrating deep linguistic fea-
tures in factuality prediction over unified datasets. In
Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short
Papers), pages 352–357.
Sun, Z. (2023). A short survey of viewing large lan-
guage models in legal aspect. arXiv preprint
arXiv:2303.09136.
Veyseh, A. P. B., Nguyen, T. H., and Dou, D. (2019). Graph
based neural networks for event factuality prediction
using syntactic and semantic structures. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4393–4399.
Waltman, L. (2016). A review of the literature on citation
impact indicators. Journal of informetrics, 10(2):365–
391.
Wang, Z., Nie, H., Zheng, W., Wang, Y., and Li, X. (2023).
A novel tensor learning model for joint relational
triplet extraction. IEEE Transactions on Cybernetics,
54(4):2483–2494.
World Health Organization (2024). World health
organization. Accessed: 01:08:2024, url =
https://www.who.int/en,.
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R. R., and Le, Q. V. (2019). Xlnet: Generalized au-
toregressive pretraining for language understanding.
Advances in neural information processing systems,
32.
Zhang, T., Wu, F., Katiyar, A., Weinberger, K. Q., and Artzi,
Y. (2020). Revisiting few-sample bert fine-tuning.
arXiv preprint arXiv:2006.05987.
Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., and
Liu, Q. (2019). Ernie: Enhanced language repre-
sentation with informative entities. arXiv preprint
arXiv:1905.07129.
Zheng, W., Wang, Z., Yao, Q., and Li, X. (2021). Wrtre:
Weighted relative position transformer for joint entity
and relation extraction. Neurocomputing, 459:315–
326.
HEALTHINF 2025 - 18th International Conference on Health Informatics
148