
REFERENCES
Anton (2024). Rocks dataset. https://universe.roboflow.
com/anton-yjhge/rocks-bhdzr. visited on 2024-10-22.
Cao, W., Wang, R., Fan, M., Fu, X., Wang, H., and Wang,
Y. (2021). A new froth image classification method
based on the mrmr-ssgmm hybrid model for recogni-
tion of reagent dosage condition in the coal flotation
process. Applied Intelligence, 52(1):732–752. [On-
line; accessed 2023-10-15].
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and
Adam, H. (2018). Encoder-decoder with atrous sepa-
rable convolution for semantic image segmentation.
Farneb
¨
ack, G. (2003). Two-frame motion estimation based
on polynomial expansion.
fengkai (2024). coal2.1 dataset. https://universe.roboflow.
com/fengkai-ncemj/coal2.1. visited on 2024-10-22.
Gui, W., Liu, J., Yang, C., Chen, N., and Liao, X. (2013).
Color co-occurrence matrix based froth image texture
extraction for mineral flotation. Minerals Engineer-
ing, s 46–47:60–67.
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.,
and Xu, D. (2022). Swin unetr: Swin transformers for
semantic segmentation of brain tumors in mri images.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2018).
Mask r-cnn.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). Ultralytics
YOLO.
Ju, Y., Wu, L., Li, M., Xiao, Q., and Wang, H. (2022). A
novel hybrid model for flow image segmentation and
bubble pattern extraction. Measurement, 192:110861.
[Online; accessed 2023-10-15].
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C.,
Lo, W.-Y., Doll
´
ar, P., and Girshick, R. (2023). Seg-
ment anything.
Land, E. H. and McCann, J. J. (1971). Lightness and retinex
theory. Journal of the Optical Society of America,
61(1):1–11.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S.,
and Guo, B. (2021). Swin transformer: Hierarchical
vision transformer using shifted windows.
Mishra, A. (2021). Contrast limited adaptive histogram
equalization (clahe) approach for enhancement of the
microstructures of friction stir welded joints.
Moolman, D. W., Aldrich, C., van Deventer, J., and Brad-
shaw, D. (1995). The interpretation of flotation froth
surfaces by using digital image analysis and neural
networks. Chemical Engineering Science, 50:3501–
3513.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). Pytorch: An imperative style,
high-performance deep learning library. Advances
in neural information processing systems, 32:8024–
8035.
Pellet (2023). Ensemble pellet dataset.
https://universe.roboflow.com/pellet-
xbnmm/ensemble-pellet. visited on 2024-10-22.
Peng, C., Liu, Y., Gui, W., Tang, Z., and Chen, Q. (2021).
Bubble image segmentation based on a novel water-
shed algorithm with an optimized mark and edge con-
straint. IEEE Transactions on Instrumentation and
Measurement, PP:1–1.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation.
Rumiantceva, M. and Filchenkov, A. (2022). Deep learn-
ing and pseudo-labeling for ore granulometry. Pro-
cedia Computer Science, 212:387–396. 11th Interna-
tional Young Scientist Conference on Computational
Science.
Saghatoleslam, N., Karimi, H., Rahimi, R., and Shirazi, H.
(2004). . . . of texture and color froth characteristics
for evaluation of flotation performance in sarchesh-
meh copper pilot plant using image analysis and neu-
ral . . . . IJE Transactions B, 17.
Subrahmanyam, T. V. S. and Forssberg, E. (1988). Froth
stability, particle entrainment and drainage in flotation
: a review. International Journal of Mineral Process-
ing, 23:33–53.
Teed, Z. and Deng, J. (2020). Raft: Recurrent all-pairs field
transforms for optical flow.
Varghese, S., Bayzidi, Y., B
¨
ar, A., Kapoor, N., Lahiri, S.,
Schneider, J. D., Schmidt, N., Schlicht, P., H
¨
uger, F.,
and Fingscheidt, T. (2020). Unsupervised temporal
consistency metric for video segmentation in highly-
automated driving. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1369–1378.
Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao,
Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., and
Xiao, B. (2020). Deep high-resolution representation
learning for visual recognition.
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M.,
and Luo, P. (2021). Segformer: Simple and efficient
design for semantic segmentation with transformers.
Zhang, L. and Xu, D. (2020). Flotation bubble size dis-
tribution detection based on semantic segmentation.
IFAC-PapersOnLine, 53(2):11842–11847. [Online;
accessed 2023-10-15].
Zhong, Y., Tang, Z., Zhang, H., Xie, Y., and Gao, X.
(2023). A froth image segmentation method via
generative adversarial networks with multi-scale self-
attention mechanism. Multimedia Tools and Applica-
tions, 83:1–20.
Weak Segmentation and Unsupervised Evaluation: Application to Froth Flotation Images
507