
4 CONCLUSION
We have outlined three key distillation modules:
Adaptive Affinity Module (AAM), Kernel Matrix
Module (KMM), and Logits Module (LM) to develop
a lightweight, generalizable model for medical imag-
ing segmentation. A unique aspect of our approach
is its ability to enhance the student model by leverag-
ing detailed contextual information from feature maps
through the integration of AAM and KMM. Experi-
mental results on MRI prostate data demonstrate that
our method significantly outperforms related state-of-
the-art (SOTA) techniques, improving both segmen-
tation accuracy and the generalization capabilities of
lightweight networks. Future work will focus on ex-
panding our ablation study by incorporating deeper
teacher models and refining the proposed method to
further improve segmentation outcomes. Addition-
ally, we will explore the model’s applicability to dif-
ferent medical imaging tasks, addressing potential
limitations to achieve the highest possible segmenta-
tion accuracy.
ACKNOWLEDGEMENTS
PID2023-146925OB-I00
REFERENCES
Bloch N, Madabhushi A, H. H. F. J. K. J. G. M. E. A. J.
C. C. L. F. K. (2015). Nci-isbi 2013 challenge: Auto-
mated segmentation of prostate structures. the Cancer
Imaging Archive.
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K.,
and Yuille, A. L. (2016). Deeplab: Semantic
image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. CoRR,
abs/1606.00915.
Ganin, Y. and Lempitsky, V. (2015). Unsupervised domain
adaptation by backpropagation. In Proceedings of the
32nd International Conference on International Con-
ference on Machine Learning - Volume 37, ICML’15,
page 1180–1189. JMLR.org.
He, T., Shen, C., Tian, Z., Gong, D., Sun, C., and Yan,
Y. (2019). Knowledge adaptation for efficient se-
mantic segmentation. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 578–587.
Hinton, G., Dean, J., and Vinyals, O. (2014). Distilling the
knowledge in a neural network. pages 1–9.
Hinton, G. E., Vinyals, O., and Dean, J. (2015). Dis-
tilling the knowledge in a neural network. CoRR,
abs/1503.02531.
Ke, T.-W., Hwang, J.-J., Liu, Z., and Yu, S. X. (2018).
Adaptive affinity fields for semantic segmentation. In
Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss,
Y., editors, Computer Vision – ECCV 2018, pages
605–621, Cham. Springer International Publishing.
Lema
ˆ
ıtre, G., Mart
´
ı, R., Freixenet, J., Vilanova, J. C.,
Walker, P. M., and Meriaudeau, F. (2015). Computer-
aided detection and diagnosis for prostate cancer
based on mono and multi-parametric mri. Comput.
Biol. Med., 60(C):8–31.
Li, H., Li, H., Zhao, W., Fu, H., Su, X., Hu, Y., and Liu, J.
(2023). Frequency-mixed single-source domain gen-
eralization for medical image segmentation. In Med-
ical Image Computing and Computer Assisted Inter-
vention – MICCAI 2023: 26th International Confer-
ence, Vancouver, BC, Canada, October 8–12, 2023,
Proceedings, Part VI, page 127–136, Berlin, Heidel-
berg. Springer-Verlag.
Li, H., Wang, Y., Wan, R., Wang, S., Li, T.-Q., and Kot,
A. C. (2020). Domain generalization for medical
imaging classification with linear-dependency regu-
larization. In Proceedings of the 34th International
Conference on Neural Information Processing Sys-
tems, NIPS ’20, Red Hook, NY, USA. Curran Asso-
ciates Inc.
Litjens, G., Toth, R., van de Ven, W., Hoeks, C., Kerkstra,
S., van Ginneken, B., Vincent, G., Guillard, G., Bir-
beck, N., Zhang, J., Strand, R., Malmberg, F., Ou,
Y., Davatzikos, C., Kirschner, M., Jung, F., Yuan, J.,
Qiu, W., Gao, Q., Edwards, P.E, Maan, B., van der
Heijden, F., Ghose, S., Mitra, J., Dowling, J., Barratt,
D., Huisman, H., and Madabhushi, A. (2014). Eval-
uation of prostate segmentation algorithms for mri:
The promise12 challenge. Medical Image Analysis,
18(2):359–373.
Liu, Q., Chen, C., Qin, J., Dou, Q., and Heng, P.-A. (2021).
Feddg: Federated domain generalization on medical
image segmentation via episodic learning in contin-
uous frequency space. In CVPR, pages 1013–1023.
Computer Vision Foundation / IEEE.
Liu, Q., Dou, Q., and Heng, P.-A. (2020a). Shape-aware
meta-learning for generalizing prostate mri segmenta-
tion to unseen domains. In Martel, A. L., Abolmae-
sumi, P., Stoyanov, D., Mateus, D., Zuluaga, M. A.,
Zhou, S. K., Racoceanu, D., and Joskowicz, L., ed-
itors, Medical Image Computing and Computer As-
sisted Intervention – MICCAI 2020. Springer Interna-
tional Publishing.
Liu, Q., Dou, Q., Yu, L., and Heng, P. A. (2020b). Ms-net:
Multi-site network for improving prostate segmenta-
tion with heterogeneous mri data. IEEE Transactions
on Medical Imaging, 39(9):2713–2724.
Lu, Y., Xing, X., and Meng, M. Q.-H. (2021). Unseen do-
main generalization for prostate mri segmentation via
disentangled representations. In 2021 IEEE Interna-
tional Conference on Robotics and Biomimetics (RO-
BIO), pages 1986–1991.
Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., and Ha-
jishirzi, H. (2018). Espnet: Efficient spatial pyra-
mid of dilated convolutions for semantic segmenta-
tion. In Proceedings of the European Conference on
Computer Vision (ECCV).
Muandet, K., Balduzzi, D., and Sch
¨
olkopf, B. (2013).
Domain generalization via invariant feature repre-
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
514