
Fang, F., Li, F., and Zeng, T. (2014). Single image dehaz-
ing and denoising: A fast variational approach. SIAM
Journal on Imaging Sciences, 7(2):969–996.
Fattal, R. (2008). Single image dehazing. ACM Trans.
Graph., 27(3):1–9.
Galdran, A., Bria, A., Alvarez-Gila, A., Vazquez-Corral, J.,
and Bertalm
´
ıo, M. (2018). On the duality between
retinex and image dehazing. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 8212–8221.
Galdran, A., Vazquez-Corral, J., Pardo, D., and Bertalm
´
ıo,
M. (2015). Enhanced variational image dehazing.
SIAM Journal on Imaging Sciences, 8(3):1519–1546.
Galdran, A., Vazquez-Corral, J., Pardo, D., and Bertalm
´
ıo,
M. (2017). Fusion-based variational image dehazing.
IEEE Signal Processing Letters, 24(2):151–155.
Golts, A., Freedman, D., and Elad, M. (2020). Unsu-
pervised single image dehazing using dark channel
prior loss. IEEE Transactions on Image Processing,
29:2692–2701.
Guo, X., Yang, Y., Wang, C., and Ma, J. (2022). Image
dehazing via enhancement, restoration, and fusion: A
survey. Information Fusion, 86-87:146–170.
He, K., Sun, J., and Tang, X. (2011). Single image haze
removal using dark channel prior. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
33(12):2341–2353.
He, K., Sun, J., and Tang, X. (2013). Guided image filtering.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(6):1397–1409.
Jackson, J., Agyekum, K. O., kwabena Sarpong, Ukwuoma,
C., Patamia, R., and Qin, Z. (2024). Hazy to hazy
free: A comprehensive survey of multi-image, single-
image, and cnn-based algorithms for dehazing. Com-
puter Science Review, 54:100669.
Jin, Z., Ma, Y., Min, L., and Zheng, M. (2024). Variational
image dehazing with a novel underwater dark channel
prior. Inverse Problems and Imaging.
Jun, W. and Rong, Z. (2013). Image defogging algorithm
of single color image based on wavelet transform and
histogram equalization. Applied Mathematical Sci-
ences, 7:3913–3921.
Lei, L., Cai, Z.-F., and Fan, Y.-L. (2024). Single image
dehazing enhancement based on retinal mechanism.
Multimedia Tools and Applications, 83(21):61083–
61101.
Li, B., Peng, X., Wang, Z., Xu, J., and Feng, D. (2017).
Aod-net: All-in-one dehazing network. In Proceed-
ings of the IEEE international conference on com-
puter vision, pages 4770–4778.
Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., and
Wang, Z. (2019). Benchmarking single-image dehaz-
ing and beyond. IEEE Transactions on Image Pro-
cessing, 28(1):492–505.
Li, P., Tian, J., Tang, Y., Wang, G., and Wu, C. (2021). Deep
retinex network for single image dehazing. IEEE
Transactions on Image Processing, 30:1100–1115.
Liu, Q., Gao, X., He, L., and Lu, W. (2018). Single im-
age dehazing with depth-aware non-local total varia-
tion regularization. IEEE Transactions on Image Pro-
cessing, 27(10):5178–5191.
Liu, Y., Yan, Z., Wu, A., Ye, T., and Li, Y. (2022). Nighttime
image dehazing based on variational decomposition
model. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
pages 639–648.
McCartney, E. J. (1977). Optics of the atmosphere: Scat-
tering by molecules and particles. Physics Bulletin,
28(11):521.
Pereira-S
´
anchez, I., Sans, E., Navarro, J., and Duran, J.
(2024). Multi-head attention residual unfolded net-
work for model-based pansharpening. arXiv preprint
arXiv:2409.02675.
Qin, X., Wang, Z., Bai, Y., Xie, X., and Jia, H. (2019). Ffa-
net: Feature fusion attention network for single image
dehazing. CoRR, abs/1911.07559.
Qu, Y., Chen, Y., Huang, J., and Xie, Y. (2019). Enhanced
pix2pix dehazing network. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 8152–8160.
Song, Y., He, Z., Qian, H., and Du, X. (2023). Vision trans-
formers for single image dehazing. IEEE Transactions
on Image Processing, 32:1927–1941.
Stipeti
´
c, V. and Lon
ˇ
cari
´
c, S. (2022). Variational formulation
of dark channel prior for single image dehazing. J.
Math. Imaging Vis., 64(8):845–854.
Tan, R. T. (2008). Visibility in bad weather from a single
image. In 2008 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8.
Thanh, L. T., Thanh, D. N. H., Hue, N. M., and Prasath,
V. B. S. (2019). Single image dehazing based on
adaptive histogram equalization and linearization of
gamma correction. In 2019 25th Asia-Pacific Confer-
ence on Communications (APCC), pages 36–40.
Wang, W. and Yuan, X. (2017). Recent advances in image
dehazing. IEEE/CAA Journal of Automatica Sinica,
4(3):410–436.
Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). Cbam:
Convolutional block attention module.
Xiao, B., Zheng, Z., Zhuang, Y., Lyu, C., and Jia, X. (2024).
Single uhd image dehazing via interpretable pyramid
network. Signal Processing, 214:109225.
Yang, D. and Sun, J. (2018). Proximal dehaze-net: A
prior learning-based deep network for single image
dehazing. In Ferrari, V., Hebert, M., Sminchisescu,
C., and Weiss, Y., editors, Computer Vision – ECCV
2018, pages 729–746, Cham. Springer International
Publishing.
Zhang, H. and Patel, V. M. (2018). Densely connected
pyramid dehazing network. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 3194–3203.
Zhou, J. and Zhou, F. (2013). Single image dehazing
motivated by retinex theory. In 2013 2nd Inter-
national Symposium on Instrumentation and Mea-
surement, Sensor Network and Automation (IMSNA),
pages 243–247.
Two Simple Unfolded Residual Networks for Single Image Dehazing
523